Exploring Utopia

Based on work with:

Noah Braeger, Arun Debray, Jonathan J. Heckman, Miguel Montero

to appear

And earlier works with: A. Debray, J.J. Heckman, M. Montero, E. Torres

Strings & Geometry —Trieste — April 8, 2025

Markus Dierigl

Discrete anomaly cancellation (in 6d)

Quick advertisement: arxiv:2504.02934

(Quadratically) Refined Discrete Anomaly Cancellation

Markus Dierigl¹, Michelangelo Tartaglia²

¹ Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
²Instituto de Física Teórica IFT-UAM/CSIC, C/ Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain

What would you do if I give you a theory?

For example the Lagrangian:

$$\mathcal{L} = \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu}$$

Probably:

• Equations of motion:

$$\partial_{\mu}F^{\mu\nu}=0$$

Bianchi identities:

$$\partial_{[\mu} F_{\nu\rho]} = 0$$

(from local definition:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

• Quantize (canonically):

What would you do if I give you a theory?

Maybe: Analyze the symmetries

0-form U(1) gauge symmetry: $A_{\mu} o A_{\mu} + \partial_{\mu} \lambda$

1-form U(1) global symmetries:

[Gaiotto, Kapustin, Seiberg, Willett '14]

Maybe: Add charged fields ψ_q and couple, e.g., $\overline{\psi}_q i \gamma^\mu D_\mu \psi_q$

Then: Check for anomalies

What if instead I give you the following data

- I want to investigate a theory: that is D-dimensional

 - allows for fermions
 - has a U(1) gauge theory

 $(F_{\mu\nu}F^{\mu\nu})^n$ Way more general:

$$j_e^\mu, j_m^\mu, D_\mu \overline{\phi} D^\mu \phi, \overline{\psi_q} i \gamma^\mu D_\mu \psi_q, \dots$$

Additionally: allow for dynamics of spacetime

(EFT flavor: smooth spacetime)

Topological gauge data

We still have the U(1) gauge field:

And a Bianchi identity:

$$dF = d(dA) = 0$$

Combine with gravitational data

corresponds to topology of spacetime manifold

Example

Let's go back to our example:

- that is D-dimensional
- allows for fermions
- has a U(1) gauge theory

$$\Omega_d^{\mathrm{Spin}}(B\mathrm{U}(1))$$

All of this from minimal input

(losing information but sensitive to universal features)

but there is a problem

No global symmetries in quantum gravity

See e.g. [Banks, Dixon '88], [Banks, Seiberg '11], [Harlow, Ooguri '18], [Harlow, Shaghoulian '20], [Bah, Chen, Maldacena '22], [Heckman, Hübner, Murdia '24], ...

broken

charge not conserved

Violation typically at least $e^{-M_{Pl}^2/\Lambda^2}$

see also [Daus, Hebecker, Leonhardt, March-Russell '20]

Symmetry-breaking objects

backgrounds associated with new symmetry-breaking defects

Can look singular at low-energies, but have finite mass (tension)

Example

codimension-two Spin defect

[McNamara, Vafa '19], [Hamada, Hamada, Kimura '25]

No issue in IIB: [Debray, MD, Heckman, Montero '23]

also takes care of this (compactified on circle)

magnetic monopole

Once upon a time in IIBordia

[Debray, MD, Heckman, Montero '21 & '23]

Type IIB supergravity:

- properties of spacetime
- S-duality

Expectation:

$$\Omega_d^{\rm IIB} = 0$$

(Big thanks to Paco Giudice for the map)

\overline{d}	$\Omega_d^{\mathrm{Spin}}ig(B\mathrm{SL}(2,\mathbb{Z})ig)$	$\Omega_d^{{ m Spin-Mp}(2,\mathbb{Z})}$	$\Omega_d^{ ext{Spin-GL}^+(2,\mathbb{Z})}$
	§4	§5	§6
0	${\mathbb Z}$	\mathbb{Z}	\mathbb{Z}
1	$\mathbb{Z}_2 \oplus \mathbb{Z}_{12}$	$\mathbb{Z}_3 \oplus \mathbb{Z}_8$	$2\mathbb{Z}_2$
2	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	0	\mathbb{Z}_2
3	$\mathbb{Z}_2 \oplus \mathbb{Z}_{24}$	$\mathbb{Z}_2 \oplus \mathbb{Z}_3$	$3\mathbb{Z}_2\oplus\mathbb{Z}_3$
4	${\mathbb Z}$	${\mathbb Z}$	\mathbb{Z}
5	\mathbb{Z}_{36}	$\mathbb{Z}_2 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_{32}$	$2\mathbb{Z}_2$
6	0	0	0
7	$\mathbb{Z}_2 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_{32}$	$\mathbb{Z}_4 \oplus \mathbb{Z}_9$	$\mathbb{Z}_4 \oplus 3\mathbb{Z}_2 \oplus \mathbb{Z}_9$
8	$\mathbb{Z}\oplus\mathbb{Z}$	$\mathbb{Z}\oplus\mathbb{Z}$	$\mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z}_2$
9	$3\mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{27}$	$\mathbb{Z}_{128} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{27}$	$8\mathbb{Z}_2$
10	$4\mathbb{Z}_2$	\mathbb{Z}_2	$4\mathbb{Z}_2$
11	$2\mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus 2\mathbb{Z}_8 \oplus \mathbb{Z}_{27} \oplus \mathbb{Z}_{128}$	$\mathbb{Z}_8 \oplus 2\mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{27}$	$\mathbb{Z}_8 \oplus 9\mathbb{Z}_2 \oplus \mathbb{Z}_{27} \oplus \mathbb{Z}_3$

many potential global symmetries

[Debray, MD, Heckman, Montero '21 & '23]

Symmetry-breaking defects

String theory takes care of it - interesting corners

Non-Higgsable clusters

[Morrison, Taylor '12]

- $\mathcal{N} = 3$ S-folds [Garcia-Etxebarria, Regalado '15]
- [p,q]-7-branes

One remains

[MD, Heckman, Montero, Torres '22 + '23]

$$\hat{R} \in GL^+(2,\mathbb{Z})$$

Let's explore Utopia

Supergravity with:

- 32 supercharges
- Spacetime
- U-duality

(Another huge thanks to Paco Giudice)

U-duality

See e.g. [Obers, Pioline '98]

U-duality in (11-k) dimensions:

$$\mathrm{SL}(k;\mathbb{Z})\bowtie\mathrm{SO}(k-1,k-1;\mathbb{Z})$$

		$G_U^{D m d}$	D
rom:	comes from:	1	10
10111.		$\mathrm{SL}(2,\mathbb{Z})$	9
T^k	M-theory on	$\mathrm{SL}(3,\mathbb{Z}) \times \mathrm{SL}(2,\mathbb{Z})$	8
y OII 1	IVITUIGOI y OII	$\mathrm{SL}(5,\mathbb{Z})$	7
15		$\mathrm{SO}(5,5,\mathbb{Z})$	6
on T^{k-1}	tuna IID an	$\mathrm{E}_{6(6)}(\mathbb{Z})$	5
	type IIB on	$\mathrm{E}_{7(7)}(\mathbb{Z})$	4
		$\mathrm{E}_{8(8)}(\mathbb{Z})$	3

Surprise I: Sparse codimension-two

In general one has:

$$\Omega_1^{\mathrm{Spin}}(BG_U) = \mathbb{Z}_2 \oplus \mathrm{Ab}(G_U)$$

Abelianization

$$Ab(G_U) = \frac{G_U}{[G_U, G_U]}$$

$$Ab(SL(3,\mathbb{Z})) = 0$$

$$Ab(G_U^{Dd}) = 0, \quad D < 8$$

no extra defects needed in codim-two

Still interesting exotic branes

[deBoer, Shigemori '12]

Why are they not required?

Gravitational solitons

[McNamara '21], [Debray, MD, Heckman, Montero '23]

Gravitational solitons do the job (smooth geometries)

If

$$g = [g_1, g_2] = g_1 g_2 g_1^{-1} g_2^{-1}$$

in commutator subgroup

no singular object, but non-trivial topology

Gravitational solitons

See also [Ruiz '24]

Gravitational solitons = wormholes

Non-perturbative breaking in quantum gravity $\,e^{-2}$

8d Supergravity

 $\mathcal{N}=2$ supergravity in eight dimensions with **U-duality**

$$\mathrm{SL}(2,\mathbb{Z}) imes \mathrm{SL}(3,\mathbb{Z})$$

$$ightharpoonup \Omega_d^{\mathrm{Spin}} \left(B(\mathrm{SL}(2,\mathbb{Z}) \times \mathrm{SL}(3,\mathbb{Z})) \right)$$

d	$\Omega_d^{\mathrm{Spin}}(B\mathrm{SL}(2,\mathbb{Z}) \times B\mathrm{SL}(3,\mathbb{Z}))$
1	$(\mathbb{Z}_2\oplus)\mathbb{Z}_3\oplus\mathbb{Z}_4$
2	$(\mathbb{Z}_2 \oplus) \mathbb{Z}_2^{\oplus 3}$
3	$\mathbb{Z}_3^{\oplus 3} \oplus \mathbb{Z}_2^{\oplus 3} \oplus \mathbb{Z}_8^{\oplus 3}$
4	$(\mathbb{Z}\oplus)\mathbb{Z}_3^{\oplus 2}\oplus\mathbb{Z}_2^{\oplus 3}\oplus\mathbb{Z}_4^{\oplus 2}$
5	$\mathbb{Z}_3^{\oplus 2} \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_2^{\oplus 5} \oplus \mathbb{Z}_4$
6	$\mathbb{Z}_3^{\oplus 2} \oplus \mathbb{Z}_2^{\oplus 3} \oplus \mathbb{Z}_4^{\oplus 2}$
7	$\mathbb{Z}_3^{\oplus 2} \oplus \mathbb{Z}_9^{\oplus 3} \oplus \mathbb{Z}_2^{\oplus 6} \oplus \mathbb{Z}_8^{\oplus 2} \oplus \mathbb{Z}_{16}^{\oplus 2} \oplus \mathbb{Z}_{32}$

a LOT of topological charges

What are the objects?

What do we expect?

We do know some 'geometric' UV completions:

- Type IIB and F-theory configurations
- M-theory
- Compactifications of defects
- Non-geometric defects
 mixing diffeos and T-duality

What we find (examples) (confirmation of what I told you last year)

Type IIB:

$$\mathbb{Z}_3 \in \Omega_3^{\mathrm{Spin}}(BG_U)$$

non-Higgsable cluster compactified on torus (a descendant of IIBorida)

ightharpoonup Argyres-Douglas theory $D_3 ig(\mathrm{SU}(2) ig)$

[del Zotto, Vafa, Xie '15], [Carta, Giacomelli, Mekareeya, Mininno '23]

M-theory:

$$\mathbb{Z}_3 \in \Omega_3^{\mathrm{Spin}}(BG_U)$$

three sector of E_0 theory (M-theory on $\mathbb{C}^3/\mathbb{Z}_3$) [Seiberg '96], [Morrison, Seiberg '97]

$$(\mathbb{C}^3/\mathbb{Z}_3) \oplus (\mathbb{C}^3/\mathbb{Z}_3) \oplus (\mathbb{C}^3/\mathbb{Z}_3)$$

See also U-folds, e.g., [Kumar, Vafa '96], [Liu, Minasian '97], ...

Surprise II: Z vs Q

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \in SO(3)$$

Why not 'rotate' to an easier frame?

One can do that over $\mathbb Q$ but not over $\mathbb Z$

but almost:

Strings & Non-Geometry

defect might have geometric interpretation

But its compactification involves a Non-geometric action (non-geometric twist)

Strings & Non-Geometry

At d = 5 we find non-geometric defects:

$$\begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{cannot be conjugated to} \quad \text{a geometric subgroup}$$

$$L_3^5 = \partial(\mathbb{C}^3/\mathbb{Z}_3)$$

Codimension-six string defect with action on geometry and other moduli

Non-perturbative generalization of T-fold geometry

[Hull '04, '06]

Surprises III: Resurrection of Codim-2

In d = 2 we find:

$$M_1^{(i)}, M_2^{(i)} \in SL(3, \mathbb{Z}), \quad [M_1^{(i)}, M_2^{(i)}] = 0$$

Our usual approach would tell us: **New codimension-two brane** compactified on circle

no problem with transition function since monodromies commute

Why no soliton solution?

Surprises III: Gravitational solitons fail

Try to use the soliton

action incompatible with

 g_1, g_2

for any choice

does not lead to well-defined background

Subtlety of fermions

We use the bosonic version of the duality group

geometric action in certain duality frames T^2 , $\tau=i$: S

$$T^2, \tau = i$$
: S

there are fermions: $S^4\psi=-\psi$

$$S^4\psi = -\psi$$

should affect the full (fermionic) U-duality

tricky to combine

Spin-GL⁺ of type IIB

Pin⁺ of M-theory

d	$\Omega_d^{\mathrm{Spin}}ig(B\mathrm{SL}(2,\mathbb{Z})ig)$	$\Omega_d^{{ m Spin-Mp}(2,\mathbb{Z})}$	$\Omega_d^{ ext{Spin-GL}^+(2,\mathbb{Z})}$
	§4	§5	§6
0	${\mathbb Z}$	${\mathbb Z}$	${\mathbb Z}$
1	$\mathbb{Z}_2 \oplus \mathbb{Z}_{12}$	$\mathbb{Z}_3 \oplus \mathbb{Z}_8$	$2\mathbb{Z}_2$
2	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	0	\mathbb{Z}_2
3	$\mathbb{Z}_2 \oplus \mathbb{Z}_{24}$	$\mathbb{Z}_2 \oplus \mathbb{Z}_3$	$3\mathbb{Z}_2\oplus\mathbb{Z}_3$
4	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}
5	\mathbb{Z}_{36}	$\mathbb{Z}_2 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_{32}$	$2\mathbb{Z}_2$
6	0	0	0
7	$\mathbb{Z}_2 \oplus \mathbb{Z}_9 \oplus \mathbb{Z}_{32}$	$\mathbb{Z}_4 \oplus \mathbb{Z}_9$	$\mathbb{Z}_4 \oplus 3\mathbb{Z}_2 \oplus \mathbb{Z}_9$
8	$\mathbb{Z}\oplus\mathbb{Z}$	$\mathbb{Z}\oplus\mathbb{Z}$	$\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$
9	$3\mathbb{Z}_2\oplus\mathbb{Z}_3\oplus\mathbb{Z}_4\oplus\mathbb{Z}_8\oplus\mathbb{Z}_{27}$	$\mathbb{Z}_{128} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{27}$	$8\mathbb{Z}_2$
10	$4\mathbb{Z}_2$	\mathbb{Z}_2	$4\mathbb{Z}_2$
11	$2\mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus 2\mathbb{Z}_8 \oplus \mathbb{Z}_{27} \oplus \mathbb{Z}_{128}$	$\mathbb{Z}_8 \oplus 2\mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{27}$	$\mathbb{Z}_8 \oplus 9\mathbb{Z}_2 \oplus \mathbb{Z}_{27} \oplus \mathbb{Z}_3$

It matters

Summary & Outlook

(As for type IIB in 10d) this program is able to predict:

- Many symmetry-breaking defects imposed by U-duality
- Interesting worldvolume theories (SCFTs, twists)
- Very stringy corners (non-geometry)
 - String theory very complete
 - Fermionic lift (BPS nature)
- Many things to do: Properties of the defects (applications, supergravity)
 - Physics in maths

Non-deformabilty

What does singular in supergravity mean?

Maybe can regularize (parts of) spacetime, but still there is a defect