S-folds and 4d $\mathcal{N} = 2$ SCFTs

Simone Giacomelli

University of Milano-Bicocca

Strings and Geometry 2025

April 8th 2025

Based on: SG, R. Savelli, G. Zoccarato arXiv:2405.00101[hep-th]; SG, W. Harding, N. Mekareeya, A. Mininno arXiv:2411.03425[hep-th] (and work in progress).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Introduction

Field Theories with extended supersymmetry

Theories with eight supercharges constitute an important laboratory for the study of nonperturbative phenomena in QFT.

4d $\mathcal{N} = 2$ SCFTs have a $SU(2)_R \times U(1)_R$ symmetry and display an intricate moduli space of vacua:

- Coulomb Branch (CB): where vector multiplet scalars have nonzero vev (SU(2)_R unbroken);
- **Higgs Branch (HB):** where hypermultiplet scalars have nonzero vev (*U*(1)_{*R*} unbroken).

It can be exploited for classifying SCFTs at low rank (CB dimension). Argyres, Lotito, Lü, Martone '15-'16; Bourget, Grimminger, Martone, Zafrir '21.

- Introduction

Geometric realizations of $\mathcal{N} = 2$ theories

We have discovered many strongly-coupled SCFTs via stringy constructions:

- Type IIB compactifications (geometric engineering);
- \blacksquare Class S.

These methods do not allow us to study RG flows triggered by relevant (mass) deformations.

We propose a geometric method which allows us to efficiently study such RG flows:

- Introduction

Geometric realizations of $\mathcal{N} = 2$ theories

We have discovered many strongly-coupled SCFTs via stringy constructions:

- Type IIB compactifications (geometric engineering);
- $\blacksquare \text{ Class } \mathcal{S}.$

These methods do not allow us to study RG flows triggered by relevant (mass) deformations.

We propose a geometric method which allows us to efficiently study such RG flows:

 $\begin{array}{ccc} D3 \text{ branes probing} & \text{6d orbi-instanton} \\ \text{a S-fold background in} & \longleftrightarrow & \text{theories compactiified} \\ & \text{Type IIB.} & \text{on } \mathcal{T}^2. \end{array}$

└─7-branes and S-folds

$\mathcal{N} = 2$ theories from *D*3 branes

We consider 7-branes with constant axio-dilaton. Mukhi, Dasgupta '96.

G	Ø	<i>SU</i> (2)	<i>SU</i> (3)	<i>SO</i> (8)	E_6	E ₇	<i>E</i> ₈
Δ_7	6/5	4/3	3/2	2	3	4	6

The angular variable around the 7-brane has periodicity $2\pi/\Delta_7$.

We probe the 7-brane with a stack of N D3 branes:

	0	1	2	3	4	5	6	7	8	9
7-brane	x	Х	Х	Х	Х	Х	Х	X		
D3 brane	x	х	х	х						

The gauge symmetry G on the 7-brane becomes the global symmetry in 4d.

└─7-branes and S-folds

S-folds + 7-branes

We combine the 7-brane with a \mathbb{Z}_{ℓ} quotient of the 89-plane. To preserve $\mathcal{N} = 2$ supersymmetry this must be accompanied (for $\ell \neq 1$) by the action of $\mathbb{Z}_{\ell \Delta_7} \subset SL(2, \mathbb{Z})$. Apruzzi, SG, Schafer-Nameki '20.

We find the following possibilities:

For $\ell = 1 \ \Delta_7 = 1, 6/5, 4/3, 3/2, 2, 3, 4$ and 6;

For
$$\ell = 2 \ \Delta_7 = 1, 3/2, 2$$
 and 3;

• For
$$\ell = 3 \Delta_7 = 1, 4/3$$
 and 2;

• For
$$\ell = 4 \ \Delta_7 = 1$$
 and $3/2$;

• For
$$\ell = 5 \ \Delta_7 = 6/5$$
;

For $\ell = 6 \Delta_7 = 1$.

Each possibility leads to an infinite family of 4d $\mathcal{N} = 2$ SCFTs which include all rank-1 theories!

└─7-branes and S-folds

S-folds + 7-branes

We combine the 7-brane with a \mathbb{Z}_{ℓ} quotient of the 89-plane. To preserve $\mathcal{N} = 2$ supersymmetry this must be accompanied (for $\ell \neq 1$) by the action of $\mathbb{Z}_{\ell \Delta_7} \subset SL(2, \mathbb{Z})$. Apruzzi, SG, Schafer-Nameki '20.

We find the following possibilities:

For
$$\ell = 1$$
 $\Delta_7 = 1, 6/5, 4/3, 3/2, 2, 3, 4$ and 6;
For $\ell = 2$ $\Delta_7 = 1, 3/2, 2$ and 3;
For $\ell = 3$ $\Delta_7 = 1, 4/3$ and 2;
For $\ell = 4$ $\Delta_7 = 1$ and $3/2$;
For $\ell = 5$ $\Delta_7 = 6/5$;
For $\ell = 6$ $\Delta_7 = 1$.

Each possibility leads to an infinite family of 4d $\mathcal{N}=2$ SCFTs which include all rank-1 theories!

Orbi-instanton theories in 6d

Realized in M-theory by probing with M5 branes a ADE singularity $\mathbb{C}^2/\Gamma_{ADE}$ inside a M9 wall: Del Zotto, Heckman, Tomasiello, Vafa '14.

	0	1	2	3	4	5	6	7	8	9	10
M9	x	X	X	X	X	X	X	X	х	х	
M9 M5	x	X	X	X	X	X					
Γ _{ADE}									х		

For $\Gamma_{ADE} = \mathbb{Z}_M$ they are the UV completion of:

$$G-SU(m_1)-\cdots-SU(m_n)-M$$

■ *G* is of *SU* or *USp* type;

For given M the 6d theories are labelled by $Hom(\mathbb{Z}_M, E_8)$ (holonomy at infinity for the gauge field on the M9).

Orbi-instanton theories in 6d

Realized in M-theory by probing with M5 branes a ADE singularity $\mathbb{C}^2/\Gamma_{ADE}$ inside a M9 wall: Del Zotto, Heckman, Tomasiello, Vafa '14.

											10
M9	x	X	X	X	X	X	X	X	X	х	
M5	x	X	x	X	X	X					
Γ _{ADE}								x	X	х	

For $\Gamma_{ADE} = \mathbb{Z}_M$ they are the UV completion of:

$$G - SU(m_1) - \cdots - SU(m_n) - M$$

- *G* is of *SU* or *USp* type;
- For given *M* the 6d theories are labelled by Hom(Z_M, E₈) (holonomy at infinity for the gauge field on the M9).

4d $\mathcal{N} = 2$ theories from orbi-instantons

Compactifying the 6d theory on T^2 we find a 4d SCFT. If the 6d theory has global symmetry $G_F = \hat{G}/\mathbb{Z}_\ell$ where $\mathbb{Z}_\ell \subset \mathcal{Z}(\hat{G})$ (\hat{G} is simply-connected)

we can turn on **almost-commuting** holonomies P and Q on T^2

$$PQ = \omega QP; \quad \omega \in \mathbb{Z}_{\ell}$$

while preserving $\mathcal{N} = 2$ susy (**SW twist**). Ohmori, Tachikawa, Zafrir '18.

The 6d theory admits a \mathbb{Z}_{ℓ} SW twist only for a subset of possible holonomies and if M is a multiple of ℓ . Heckman, Lawrie, Lin, Zhang, Zoccarato '22

4d $\mathcal{N} = 2$ theories from orbi-instantons

Compactifying the 6d theory on T^2 we find a 4d SCFT. If the 6d theory has global symmetry $G_F = \hat{G}/\mathbb{Z}_\ell$ where $\mathbb{Z}_\ell \subset \mathcal{Z}(\hat{G})$ (\hat{G} is simply-connected)

we can turn on **almost-commuting** holonomies P and Q on T^2

$$PQ = \omega QP; \quad \omega \in \mathbb{Z}_{\ell}$$

while preserving $\mathcal{N} = 2$ susy (**SW twist**). Ohmori, Tachikawa, Zafrir '18.

The 6d theory admits a \mathbb{Z}_{ℓ} SW twist only for a subset of possible holonomies and if M is a multiple of ℓ . Heckman, Lawrie, Lin, Zhang, Zoccarato '22.

Combining orbifolds and S-folds

We probe with N D3 branes the following background:

	<i>z</i> ₁	<i>z</i> ₂	z ₃	T^2	
7-brane	x	X			-
\mathbb{Z}_{ℓ}	ω_{ℓ}	$\omega_\ell^{-1} \ \omega_k^{-1}$	ω_ℓ	ω_{ℓ}^{-1}	$\omega_\ell = e^{2\pi i/\ell}$
\mathbb{Z}_k	ω_k	ω_k^{-1}		-	$\omega_k = e^{2\pi i/k}$

For each value of N, k we find several SCFT's (of rank $\sim Nk$):

• $O(k^4)$ for $\ell = 2$;

• $O(k^2)$ for $\ell = 3$;

• k + 1 for $\ell = 4$ and 1 for $\ell > 4$.

For $\ell \Delta_7 = 6$ these SCFT's coincide with SW theories. The underlying orbi-instantons have $M = \ell k$. sG, Savelli, Zoccarato '2'

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Combining orbifolds and S-folds

We probe with N D3 branes the following background:

$$z_1$$
 z_2 z_3 T^2 7-brane x x \mathbb{Z}_ℓ ω_ℓ ω_ℓ^{-1} ω_ℓ \mathbb{Z}_k ω_k ω_k^{-1} $\omega_k = e^{2\pi i/\ell}$

For each value of N, k we find several SCFT's (of rank $\sim Nk$):

- $O(k^4)$ for $\ell = 2$;
- $O(k^2)$ for $\ell = 3$;

• k + 1 for $\ell = 4$ and 1 for $\ell > 4$.

For $\ell \Delta_7 = 6$ these SCFT's coincide with SW theories. The underlying orbi-instantons have $M = \ell k$. SG, Savelli, Zoccarato '24.

SW theories and their relevant deformations

SW theories (with $\ell \Delta_7 = 6$) have global symmetry

 $G_F \supseteq \mathcal{H} \times SU(k); \quad \mathcal{H} \subset G$

We can find other SCFTs via mass deformations:

- **1** Those preserving SU(k) are implemented by changing Δ_7 .
- **2** Those preserving \mathcal{H} correspond to activating the B-field.

For both types of mass deformations we can determine:

- The Coulomb branch spectrum;
- The magnetic quiver describing the Higgs branch;
- 't Hooft anomalies for the global symmetries.

Theories with $\ell = 1$ and Class S

Compactifying orbi-instanton theories on T^2 without SW twist $(\ell = 1)$ we get A-type Class S theories. Mekareeya, Ohmori, Tachikawa, Zafrir '17. We find a subset of Class S trinions (spheres with 3 punctures).

For A-type Class S theories punctures are classified by partitions of N, the number of M5 branes.

Compactification of orbi-instantons leads to trinions such that:

- One puncture labelled by a partition with 2 elements
- One labelled by a partition with 3 elements.

All such trinions arise in this way!

SG, Harding, Mekareeya, Mininno '24.

Theories with $\ell = 1$ and Class S

Compactifying orbi-instanton theories on T^2 without SW twist $(\ell = 1)$ we get A-type Class S theories. Mekareeya, Ohmori, Tachikawa, Zafrir '17. We find a subset of Class S trinions (spheres with 3 punctures).

For A-type Class S theories punctures are classified by partitions of N, the number of M5 branes.

Compactification of orbi-instantons leads to trinions such that:

- One puncture labelled by a partition with 2 elements
- One labelled by a partition with 3 elements.

All such trinions arise in this way!

SG, Harding, Mekareeya, Mininno '24.

All Class S theories from orbi-instantons

We study mass deformations of the 4d theory by analyzing the FI deformations of the 3d mirror gauge theory. Benini, Tachikawa, Xie '10.

We find that:

SG, Harding, Mekareeya, Mininno '24.

- With a mass deformation we can generate all trinions with one puncture labelled by a partition with 2 elements;
- With a further deformation we find all other trinions (including T_N theory);
- We can then generate all theories with $n \ge 4$ punctures on the sphere by activating n 2 mass deformations.

With further mass deformations we get either higher genus theories or Argyres-Douglas type models.

Higgs branch and magnetic quivers

The HB of our theories is described by a unitary magnetic quiver, which is derived from the known quiver of the underlying 6d theory.

For the theories with e.g. $\Delta_7 = 3$ and $\ell = 2$ we find

If we change Δ_7 we just need to replace the Dynkin diagram.

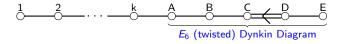
All theories for given k and Δ_7 are related by higgsing (proved via **quiver subtraction**).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Higgs branch and magnetic quivers

The HB of our theories is described by a unitary magnetic quiver, which is derived from the known quiver of the underlying 6d theory.

For the theories with e.g. $\Delta_7 = 3$ and $\ell = 2$ we find



If we change Δ_7 we just need to replace the Dynkin diagram.

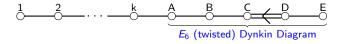
All theories for given k and Δ_7 are related by higgsing (proved via **quiver subtraction**).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Higgs branch and magnetic quivers

The HB of our theories is described by a unitary magnetic quiver, which is derived from the known quiver of the underlying 6d theory.

For the theories with e.g. $\Delta_7 = 3$ and $\ell = 2$ we find



If we change Δ_7 we just need to replace the Dynkin diagram.

All theories for given k and Δ_7 are related by higgsing (proved via **quiver subtraction**).

Holographic description and 't Hooft anomalies

The Type IIB setup implies the holographic dual is of the form

$$AdS_5 \times S^5/\Gamma$$
 ($\Gamma = \mathbb{Z}_k \times \mathbb{Z}_\ell$)

From it we deduce the formulas: Aharony, Tachikawa '07; SG, Savelli, Zoccarato '24.

$$\begin{split} &8a - 4c = (M\Delta_7)N^2 + (2M\Delta_7 \epsilon + \Delta_7 - 1)N + \alpha N^0 \\ &TrR = 48(a - c) = 12(1 - \Delta_7)N + \beta N^0 \\ &Tr(R\mathcal{H}^2) = -\Delta_7 I_{\mathcal{H} \hookrightarrow G}N + \gamma N^0 \end{split}$$

The coefficients $\alpha,\ \beta$ and γ require a one-loop computation in supergravity.

We determine them from the known central charges for N=1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Holographic description and 't Hooft anomalies

The Type IIB setup implies the holographic dual is of the form

$$AdS_5 \times S^5/\Gamma$$
 ($\Gamma = \mathbb{Z}_k \times \mathbb{Z}_\ell$)

From it we deduce the formulas: Aharony, Tachikawa '07; SG, Savelli, Zoccarato '24.

$$\begin{split} &8a - 4c = (M\Delta_7)N^2 + (2M\Delta_7 \epsilon + \Delta_7 - 1)N + \alpha N^0 \\ &TrR = 48(a - c) = 12(1 - \Delta_7)N + \beta N^0 \\ &Tr(R\mathcal{H}^2) = -\Delta_7 I_{\mathcal{H} \hookrightarrow G}N + \gamma N^0 \end{split}$$

The coefficients $\alpha,\,\beta$ and γ require a one-loop computation in supergravity.

We determine them from the known central charges for N = 1.

Generalized S-folds and the 4d $\mathcal{N} = 2$ landscape

To identify all theories of a given rank we should:

- List all orbi-instanton theories whose SW compactification gives a theory of the required rank. These are at the top of the mass deformation trees.
- Using our rules derive for each SW theory its descendants upon relevant deformation.

This procedure is algorithmic and **does not require** a detailed knowledge of all theories of lower rank.

We recover all theories of rank 1 and \sim 90% of known rank 2 theories.

We find 115 rank 3 theories, including 17 out of the 31 lagrangian theories.

Generalized S-folds and the 4d $\mathcal{N} = 2$ landscape

To identify all theories of a given rank we should:

- List all orbi-instanton theories whose SW compactification gives a theory of the required rank. These are at the top of the mass deformation trees.
- Using our rules derive for each SW theory its descendants upon relevant deformation.

This procedure is algorithmic and **does not require** a detailed knowledge of all theories of lower rank.

We recover all theories of rank 1 and $\sim 90\%$ of known rank 2 theories.

We find 115 rank 3 theories, including 17 out of the 31 lagrangian theories.

- Conclusions

Concluding remarks

We have developed a general geometric framework which allows us to study a vast class of 4d $\mathcal{N}=2$ theories and understand RG flows between them.

Possible generalizations:

- Understand more general mass deformations;
- Consider orbi-instantons of type D or E;
- Consider other twists of the 6d theories, not of SW type;
- 4d theories with minimal supersymmetry.

Thank You!

- Conclusions

Concluding remarks

We have developed a general geometric framework which allows us to study a vast class of 4d $\mathcal{N}=2$ theories and understand RG flows between them.

Possible generalizations:

- Understand more general mass deformations;
- Consider orbi-instantons of type D or E;
- Consider other twists of the 6d theories, not of SW type;
- 4d theories with minimal supersymmetry.

Thank You!

- Conclusions

Concluding remarks

We have developed a general geometric framework which allows us to study a vast class of 4d $\mathcal{N}=2$ theories and understand RG flows between them.

Possible generalizations:

- Understand more general mass deformations;
- Consider orbi-instantons of type D or E;
- Consider other twists of the 6d theories, not of SW type;
- 4d theories with minimal supersymmetry.

Thank You!