Discrete Gauging of 6d SCFTs and Wreathed 3d $\mathcal{N} = 4$ Quivers Craig Lawrie (DESY)

Strings and Geometry 2025

Based on: 2504.03830 w/ A. Mininno and T. Lepper

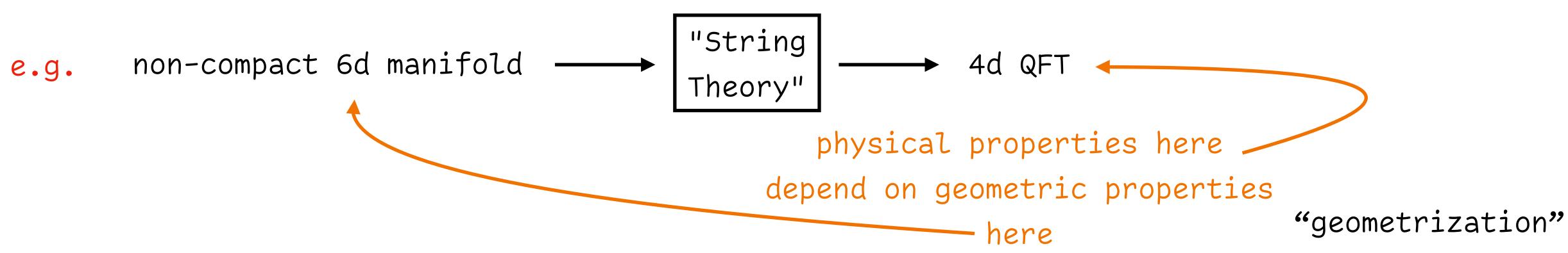
08-04-2025

recent years: myriad top-down and bottom-up constructions and (attempted) classifications of superconformal field theories in various dimensions

recent years: myriad top-down and bottom-up constructions and (attempted) classifications of superconformal field theories in various dimensions

> see talks at this conference series over the last decade!

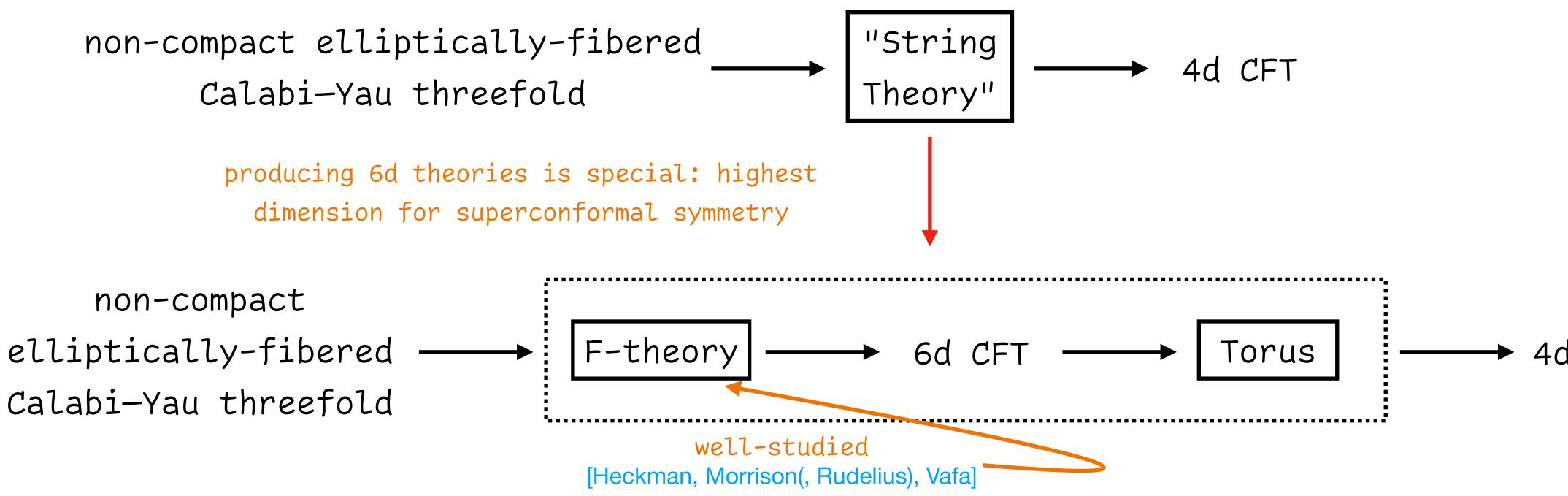
- recent years: myriad top-down and bottom-up
- constructions and (attempted) classifications of
- superconformal field theories in various dimensions



see talks at this conference series over the last decade!

recent years: myriad top-down and bottom-up constructions and (attempted) classifications of superconformal field theories in various dimensions

e.g. Calabi-Yau threefold



let \mathcal{T} be an SCFT with a discrete global symmetry

let \mathcal{T} be an SCFT with a discrete global symmetry

- \rightarrow construct $\widetilde{\mathcal{T}}$ by gauging the discrete symmetry

let \mathcal{T} be an SCFT with a discrete global symmetry

- construct $\widetilde{\mathcal{T}}$ by gauging the discrete symmetry
- lore: discretely-gauged theories test robustness of constructions/classifications/geometrizations

let \mathcal{T} be an SCFT with a discrete global symmetry

 \rightarrow construct $\widetilde{\mathcal{T}}$ by gauging the discrete symmetry

lore: discretely-gauged theories test robustness of constructions/classifications/geometrizations

example: 4d $\mathcal{N} = 2$

conjecture: (2a - c) is a sum over Coulomb branch operators [Shapere, Tachikawa] conjecture: the Coulomb branch chiral ring is freely-generated [Beem, Lemos, Liendo, Rastelli, van Rees]

let \mathcal{T} be an SCFT with a discrete global symmetry

 \rightarrow construct $\widetilde{\mathcal{T}}$ by gauging the discrete symmetry

lore: discretely-gauged theories test robustness of constructions/classifications/geometrizations

example: 4d $\mathcal{N} = 2$ conjecture: (2a - c) is a sum over Coulomb branch operators [Shapere, Tachikawa] _conjecture: the Coulomb branch chiral ring is freely-generated [Beem, Lemos, Liendo, Rastelli, van Rees] violated when discrete-gauging!

[Argyres, Lu, Martone], [Argyres, Martone], [Bourget, Pini, Rodriguez-Gomez], [Bourton, Pini, Pomoni]

interested operators in the 1/2-BPS Higgs branch chiral ring of ${\mathcal T}$

- 1. what are the interacting fixed points on the Higgs branch? how are they related? 2. what are the half-BPS operators belonging to the Higgs branch chiral ring?
- 3. is the Higgs branch chiral ring freely generated?
- 4. what are the generators (and relations if it is not freely generated)?

interested operators in the 1/2-BPS Higgs branch chiral ring of \mathcal{T}

- 1. what are the interacting fixed points on the Higgs branch? how are they related?
- 2. what are the half-BPS operators belonging to the Higgs branch chiral ring?
- 3. is the Higgs branch chiral ring freely generated?
- 4. what are the generators (and relations if it is not freely generated)?

interested operators in the 1/2-BPS Higgs branch chiral ring of \mathcal{T}

cf, Hanany's "characterization of symplectic singularities"

- 1. what are the interacting fixed points on the Higgs branch? how are they related? 2. what are the half-BPS operators belonging to the Higgs branch chiral ring?
- 3. is the Higgs branch chiral ring freely generated?
- 4. what are the generators (and relations if it is not freely generated)?

interested operators in the 1/2-BPS Higgs branch chiral ring of \mathcal{T}

technique: find a 3d $\mathcal{N} = 4$ Lagrangian gauge theory $\mathcal{T}_{\mathcal{M}}$ such that

$$\cong \operatorname{CB}\left[\mathscr{T}_{M}\right]$$

'magnetic quiver for the Higgs branch of ${\mathscr T}"$ [Ferlito, Hanany, Mekareeya, Zafrir], [Hanany, Witten], [Hanany, Zaffaroni]

- quiver subtraction/decay and fission [Bourget, Sperling, Zhong]², [CL, Mansi, Sperling, Zhong] monopole formula for
- 1. what are the interacting fixed points on the Higgs branch? how are they related? [Cabrera, Hanany], 2. what are the half-BPS operators belonging to the Higgs branch chiral ring?
- 3. is the Higgs branch chiral ring freely generated?
- 4. what are the generators (and relations if it is not freely generated)? ^[Cremonesi, Hanany, Zaffaroni]

use tools to study CB

of Lagrangian quivers!

interested operators in the 1/2-BPS Higgs branch chiral ring of \mathcal{T}

Coulomb branch Hilbert series

technique: find a 3d $\mathcal{N} = 4$ Lagrangian gauge theory $\mathcal{T}_{\mathcal{M}}$ such that

$$\cong \operatorname{CB}\left[\mathscr{T}_{M}\right]$$

magnetic quiver for the Higgs branch of \mathcal{T}'' [Ferlito, Hanany, Mekareeya, Zafrir], [Hanany, Witten], [Hanany, Zaffaroni]

let \mathcal{T} be a 6d (1,0) SCFT with discrete symmetry Γ and magnetic quiver for the Higgs branch \mathcal{T}_M

known for many families of 6d SCFTs [Cabrera, Hanany, Sperling]², [Fazzi, Giri], [Hanany, Mekareeya], [Hanany, Zafrir], [CL, Mansi]², [CL, Mansi, Sperling, Zhong], [Mekareeya, Ohmori, Tachikawa, Zafrir]

let $\widetilde{\mathcal{T}}$ be the 6d (1,0) SCFT obtained from \mathcal{T} via gauging Γ

let \mathcal{T} be a 6d (1,0) SCFT with discrete symmetry Γ and magnetic quiver for the Higgs branch \mathcal{T}_M

the magnetic quiver for the Higgs branch of \mathcal{T} is the Γ wreathing

of the magnetic quiver for the Higgs branch of ${\mathcal T}$

let \mathcal{T} be a 6d (1,0) SCFT with discrete symmetry Γ and magnetic quiver for the Higgs branch \mathcal{T}_{M}

let $\widetilde{\mathcal{T}}$ be the 6d (1,0) SCFT obtained from \mathcal{T} via gauging Γ

proposal: $\widetilde{\mathcal{T}}_M = \mathcal{T}_M \wr \Gamma$

the magnetic quiver for the Higgs branch of \mathcal{T} is the Γ wreathing

[Arias-Tamargo, Bourget, Pini, Rodriguez-Gomez], [Arias-Tamargo, Rodriguez-Gomez], [Bourget, Hanany, Miketa], [Giacomelli, Harding, Mekareeya, Mininno], [Grimminger, Harding, Mekareeya], [Hanany, Kumaran, Li, Liu, Sperling], [Hanany, Sperling]

evidence in lower dimensions:

let \mathcal{T} be a 6d (1,0) SCFT with discrete symmetry Γ and magnetic quiver for the Higgs branch \mathcal{T}_{M}

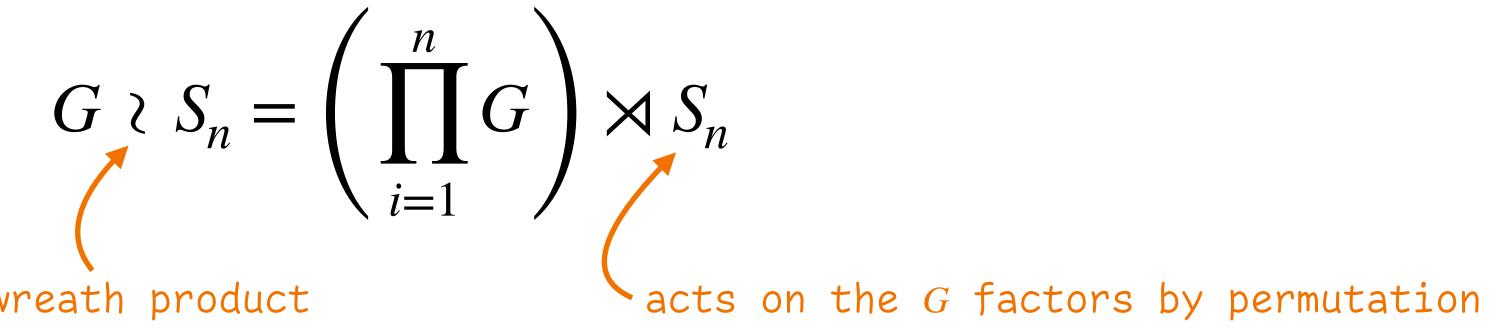
let $\widetilde{\mathcal{T}}$ be the 6d (1,0) SCFT obtained from \mathcal{T} via gauging Γ

proposal: $\widetilde{\mathcal{T}}_M = \mathcal{T}_M \wr \Gamma$

- of the magnetic quiver for the Higgs branch of \mathcal{T}

let G be a (reductive) Lie group, then

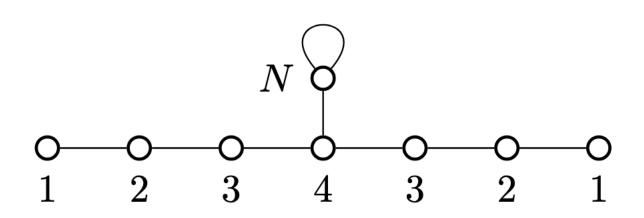
wreath product



let G be a (reductive) Lie group, then

 $G \gtrsim S_n =$ wreath product

consider a Lagrangian quiver with gauge group $G \supseteq G_w \times G_w$ and \mathbb{Z}_2 quiver automorphism that exchanges the G_w



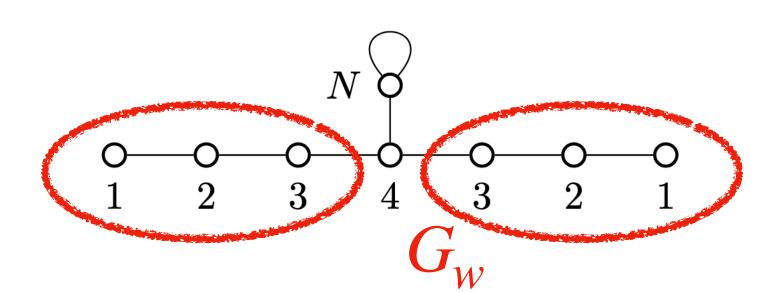
$$\left(\prod_{i=1}^{n} G\right) \rtimes S_{n}$$

acts on the G factors by permutation

let G be a (reductive) Lie group, then

 $G \gtrsim S_n =$ wreath product

consider a Lagrangian quiver with gauge group $G \supseteq G_w \times G_w$ and \mathbb{Z}_2 quiver automorphism that exchanges the G_w



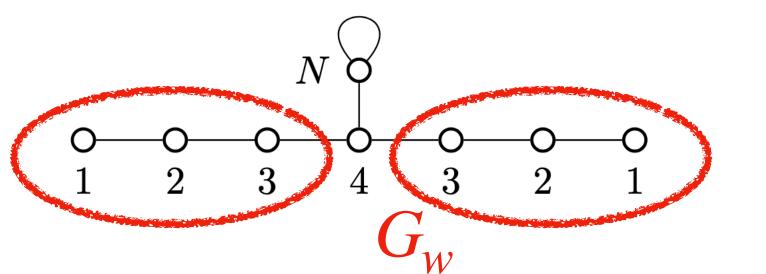
$$\left(\prod_{i=1}^{n} G\right) \rtimes S_{n}$$

acts on the G factors by permutation

let G be a (reductive) Lie group, then

 $G \gtrsim S_n =$ wreath product

 \rightarrow quiver admits a \mathbb{Z}_2 wreathing, which replaces $G_w \times G_w \to G_w \wr \mathbb{Z}_2$ NŎ



$$\left(\prod_{i=1}^{n} G\right) \rtimes S_{n}$$

acts on the G factors by permutation

consider a Lagrangian quiver with gauge group $G \supseteq G_w \times G_w$ and \mathbb{Z}_2 quiver automorphism that exchanges the G_w

How to Build a 6d SCFT

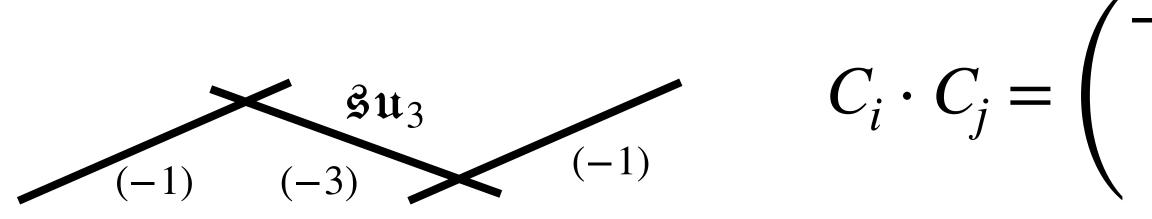
How to Build a 6d SCFT

- In Type IIB/F-theory, a 6d SCFT is associated to
- a non-compact elliptically-fibered Calabi-Yau threefold $\pi: Y \to B$ with
 - no non-minimal singularities in the fiber
 - and such that
 - all compact curves C_i in B can be simultaneously contracted [Heckman, Morrison, Vafa] [Heckman, Morrison, Rudelius, Vafa]
 - $vol(C_i) > 0 \rightarrow tensor branch; <math>vol(C_i) = 0 \rightarrow origin of tensor branch = where the SCFT lives$

How to Build a 6d SCFT

- These conditions are very restrictive:

Example: three curves with $g_1 =$

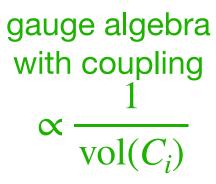


All compact curves are smooth rational: $C_i \cong \mathbb{P}^1$ Negative-definite intersection matrix: $C_i \cdot C_i < 0$ Singular fiber over $C_i \rightarrow \text{simple Lie algebra } \mathfrak{g}_i$

$$= \mathfrak{g}_{3} = \emptyset, \ \mathfrak{g}_{2} = \mathfrak{su}_{3}$$

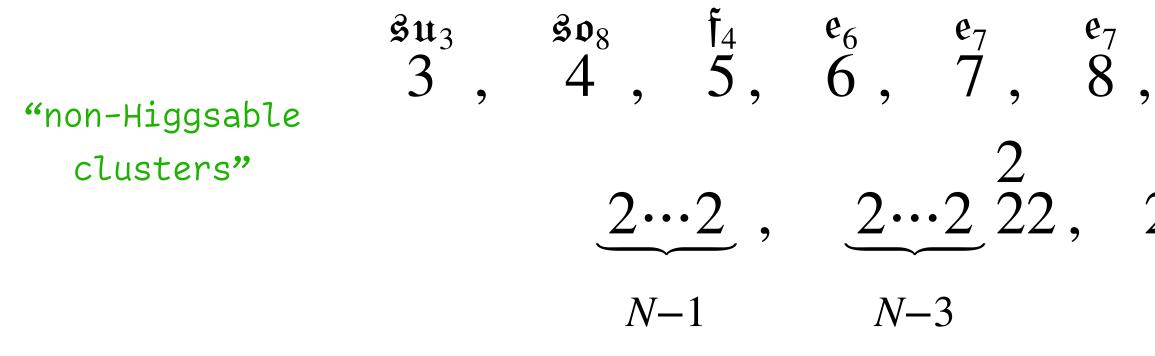
$$-1 \quad 1 \quad 0 \\ 1 \quad -3 \quad 1 \\ 0 \quad 1 \quad -1 \end{pmatrix}_{ij}$$

$$\begin{array}{c}\mathfrak{su}_3\\1&3&1\end{array}$$



How to Build a 6d SCFT **Tuned non-Higgsable clusters**

All configurations satisfying these conditions can be built from "building blocks"



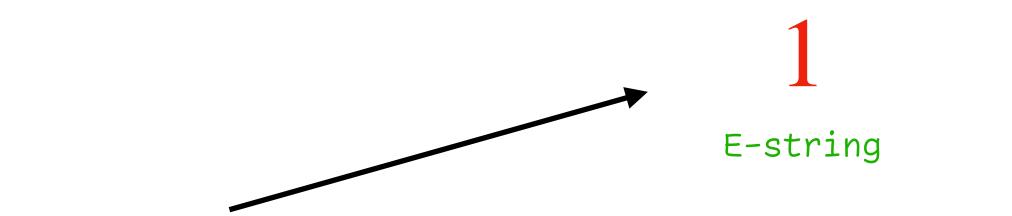
- Can tune the gauge algebra $\mathfrak{g} \to \widetilde{\mathfrak{g}} \supset \mathfrak{g}$
- Only specific combinations of $n = -C \cdot C$ and g are allowed

[Morrison, Vafa] [Morrison, Taylor] $2 \cdots 2$, $2 \cdots 2$

• Anomaly cancellation + pair (n, g) almost always fixes hypermultiplet spectrum

How to Build a 6d SCFT E-strings + tuning + gauging

• Non-Higgsable clusters can be gauged via E-strings



 E_8 flavor symmetry: gauging a subalgebra joins together non-Higgsable clusters

 \mathfrak{SU}_3

 \mathfrak{Su}_3

Tuned E-string

- $\bullet \mathfrak{su}_3 \oplus \mathfrak{su}_3 \subset \mathfrak{e}_8 \checkmark$
- •Intersection matrix

is negative definite

•Fibers are minimal V

How to Build a 6d SCFT Summary

-> algorithmic to write down billions of 6d (1,0) SCFTs

[Heckman, Morrison, Vafa] [Heckman, Morrison, Rudelius, Vafa]

Combinatorics of combining building blocks via gauging

In fact, they are all arranged into a small number of infinite families [Heckman, Rudelius, Tomasiello]

Families of 6d SCFTs: Higgs Branch RG-flows

• Complicated tensor branch configurations can be neatly ordered via Higgs branch

• The rank $N(\mathfrak{g},\mathfrak{g})$ conformal matter theories [del Zotto, Heckman, Tomasiello, Vafa]

 $\mathfrak{g}_{2\cdots 2}^{\mathfrak{g}}$

N–1

flows from progenitor theories

Worldvolume of N M5-branes probing a \mathbb{C}^2/Γ_q orbifold

Families of 6d SCFTs: Higgs Branch RG-flows Complicated tensor branch configurations can be neatly ordered via Higgs branch flows from progenitor theories • The rank N(q,q) conformal matter theories [del Zotto, Heckman, Tomasiello, Vafa] $[\overset{\mathfrak{g}}{2}\cdots\overset{\mathfrak{g}}{2}]$ Worldvolume of N M5-branes probing a \mathbb{C}^2/Γ_a orbifold *N*–1

- Theories have an $\mathfrak{g} \oplus \mathfrak{g}$ flavor symmetry

[Heckman, Morrison, Rudelius, Vafa], [Heckman, Rudelius, Tomasiello], ...

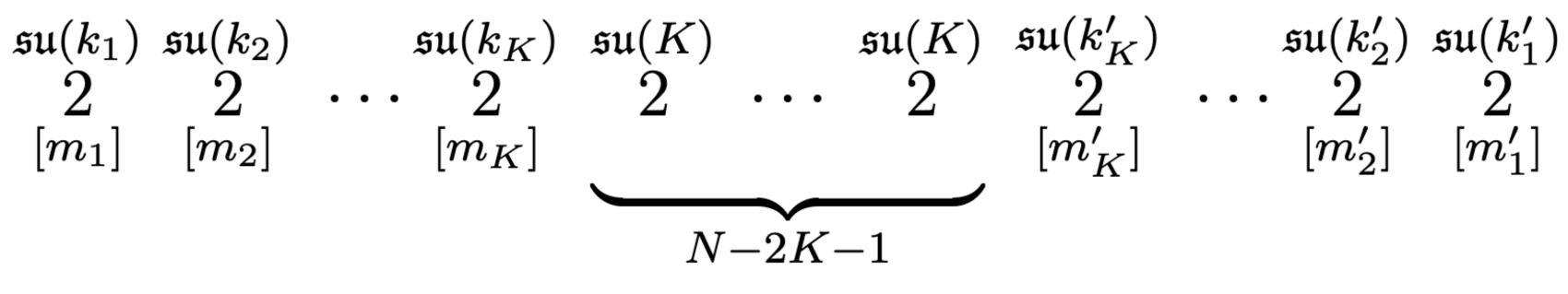
• Each g can be Higgsed by a choice of nilpotent orbit of g

 $A_{N-1}^{\mathfrak{g}}(O_L, O_R)$

6d (1,0) SCFTs have discrete global symmetry Γ if Γ is a "Green--Schwarz automorphism" of the corresponding Calabi--Yau [Apruzzi, Heckman, Rudelius]

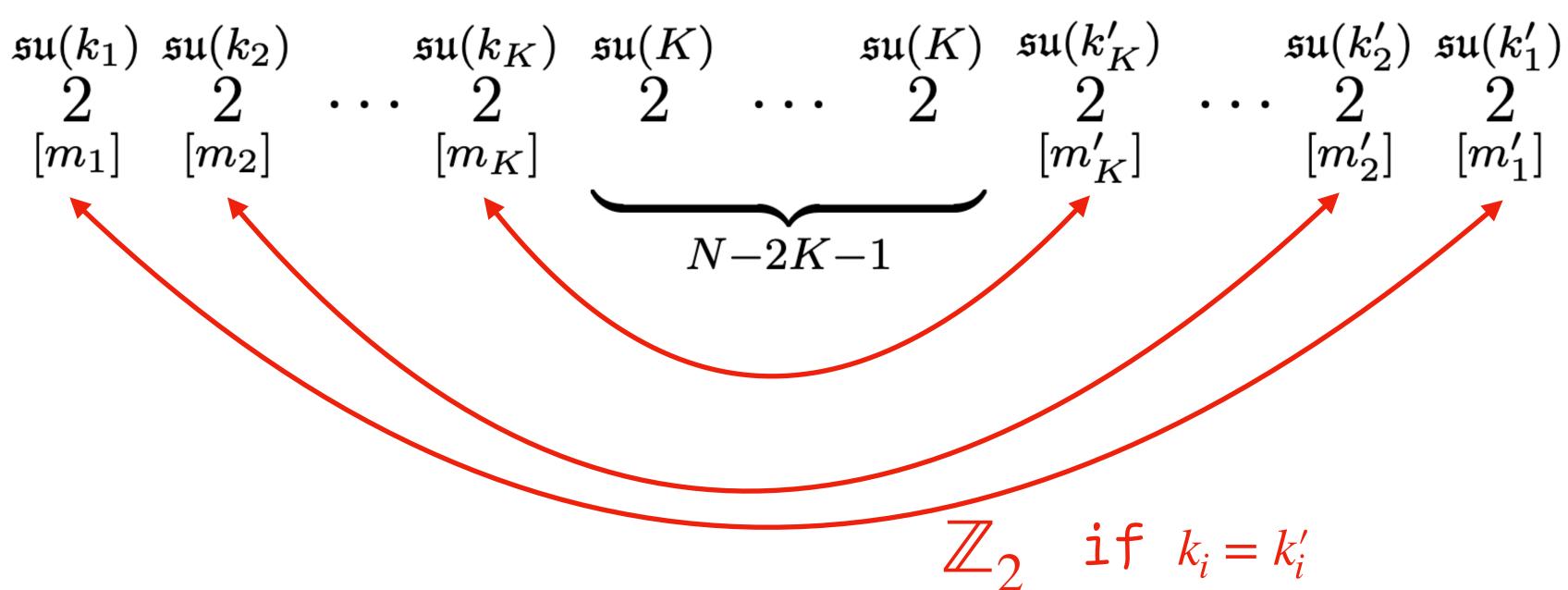
6d (1,0) SCFTs have discrete global symmetry Γ if Γ is a "Green--Schwarz automorphism" of the corresponding Calabi--Yau [Apruzzi, Heckman, Rudelius]

 $A_{N-1}^{g}(O_L, O_R)$ is $\begin{bmatrix} m_1 \end{bmatrix} \quad \begin{bmatrix} m_2 \end{bmatrix} \quad \begin{bmatrix} m_K \end{bmatrix}$



6d (1,0) SCFTs have discrete global symmetry Γ if Γ is a "Green--Schwarz automorphism" of the corresponding Calabi--Yau [Apruzzi, Heckman, Rudelius]

 $A_{N-1}^{g}(O_L, O_R)$ is $[m_K]$ $|m_1|$ $|m_2|$



the magnetic quivers for the Higgs branch of conformal matter are

$$\operatorname{HB}\left[A_{N-1}^{\mathfrak{su}(K)}(O_L, O_R)\right] \cong \operatorname{CB}\left[\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

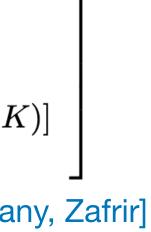
first hint: \mathbb{Z}_2 GS automorphism $\Rightarrow O_L = O_R$

[Apruzzi, Heckman, Rudelius]

- 6d (1,0) SCFTs have discrete global symmetry Γ if Γ is a
- "Green--Schwarz automorphism" of the corresponding Calabi--Yau

$$\operatorname{HB}\left[A_{N-1}^{\mathfrak{so}(2K)}(O_L, O_R)\right] \cong \operatorname{CB}\left[\begin{array}{c} & & \\ T_{O_L}[\mathfrak{so}(2K)] & \underbrace{\bullet}_{2K} & T_{O_R}[\mathfrak{so}(2K)] \\ & \underbrace{\bullet}_{2K} & T_{O_R}[\mathfrak{so}(2K)] \end{array}\right]$$
[Hanany, Sperling], [Hanany, Zafrir]

 \Rightarrow magnetic quiver admits \mathbb{Z}_2 , wreathing



check this proposal by: 1) conjecture flavor symmetry of $\widetilde{\mathscr{T}}$ by acting with \mathbb{Z}_2 on Higgs branch chiral ring generators 2) compute Coulomb branch Hilbert series of $\mathcal{T}_M \wr \mathbb{Z}_2$

let $\widetilde{\mathcal{T}}$ be obtained from conformal matter, \mathcal{T} , via gauging \mathbb{Z}_2

proposal: $\widetilde{\mathcal{T}}_M = \mathcal{T}_M \wr \Gamma$

they are consistent!

Flavor Algebras of a 6d SCFT

"E-string flavor"

"Classical flavor"

Flavor Algebras of a 6d SCFT **Classical flavor**

$$\mathbf{f} = \begin{cases} \mathfrak{su}_k \\ \mathfrak{so}_{2k} \\ \mathfrak{usp}_{2k} \end{cases}$$

Example: Anomaly cancellation $\rightarrow \frac{\mathfrak{su}_2}{1}$ has 10 fundamental hypermultiplets

- k hypermultiplets in representation \mathbf{R} rotated by flavor algebra
 - if **R** is complex if **R** is quaternionic if **R** is real

 $\longrightarrow \quad \mathbf{f} = \mathfrak{s}\mathfrak{o}_{20}$ $\frac{1}{2}(2,20)$

Flavor Algebras of a 6d SCFT **E-string flavor**

Tensor branch:

Subalgebra $\mathfrak{g}_L \oplus \mathfrak{g}_R$ of E-string flavor symmetry is gauged:

Residual flavor symmetry:

- $\cdots n_{I} \stackrel{\mathfrak{g}_{L}}{1} \stackrel{\mathfrak{g}_{R}}{n_{R}} \cdots$
- $\rho:\mathfrak{g}_L\oplus\mathfrak{g}_R\to\mathfrak{e}_8$
- $\mathfrak{f} \supseteq \operatorname{Commutant}(\rho, \mathfrak{e}_8, \mathfrak{g}_L \oplus \mathfrak{g}_R)$

Example: $1 \stackrel{\mathfrak{su}_3}{3} 1$ has $\mathbf{f} = \mathbf{e}_6 \oplus \mathbf{e}_6$

Flavor Algebras of a 6d SCFT **E-string flavor: a subtlety**

- Consider the tensor branch:
- There are two inequivalent embeddings $\mathfrak{so}_7 \oplus \mathfrak{so}_7 \subset \mathfrak{e}_8$
- They have different commutants! Commutant($\rho_1, \mathfrak{e}_8, \mathfrak{so}_7 \oplus \mathfrak{so}_7) = \mathfrak{u}_1$
- $3^{\mathfrak{so}_7}$ $3^{\mathfrak{so}_7}$ is TWO 6d (1,0) SCFTs with different flavor symmetry On T^2 both are in class \mathcal{S} of type \mathfrak{so}_8 with pairs of very even punctures

[Distler, Kang, CL]

$\frac{\mathfrak{so}_7}{\mathfrak{z}_1} \quad \frac{\mathfrak{so}_7}{\mathfrak{z}_1}$

Commutant($\rho_2, \mathfrak{e}_8, \mathfrak{so}_7 \oplus \mathfrak{so}_7) = \emptyset$

Flavor Algebras of a 6d SCFT Example

Flavor Algebras of a 6d SCFT Example

$\mathfrak{Su}_2 \mathfrak{g}_2$ 3 $[e_{g}] 1 2$

E-string flavor

g₂ $3 \left[usp_{2} \right]$ <u><u>S</u>1t₂</u> Anomaly cancellation: 1 fundamental hyper of g_2

-> classical flavor

we need to conjecture the flavor symmetry in $\widetilde{\mathcal{T}}$

we need to conjecture the flavor symmetry in $\widetilde{\mathcal{T}}$

 $\begin{array}{c} \textbf{(A, A)} \\ \textbf{(A, A)} \end{array} \begin{array}{c} \mathfrak{su}(k_1) \ \mathfrak{su}(k_2) \\ 2 \\ [m_1] \ [m_2] \end{array} \begin{array}{c} \mathfrak{su}(k_q) \\ \cdots \\ [m_q] \end{array}$

classical flavor symmetry: $\mathfrak{su}(m_{c})$

$$\underset{q+1}{\overset{\mathfrak{su}(k_{q+1})}{2}} \underset{[m_{q+1}]}{\overset{\mathfrak{su}(k_{q})}{2}} \cdots \underset{[m_{2}]}{\overset{\mathfrak{su}(k_{2})}{2}} \underset{[m_{1}]}{\overset{\mathfrak{su}(k_{1})}{2}} \operatorname{don't discuss } \mathfrak{u}(1)s$$

$$\underset{q+1}{\overset{q}{\operatorname{due to ABJ anoma}}} \underset{i=1}{\overset{q}{\operatorname{su}(m_{i})^{2} \oplus \mathfrak{u}(1)^{\ell}}} \underset{(\text{Lee, Regalado, Weigan } finite structure)}{\overset{\mathfrak{su}(k_{1})}{\operatorname{su}(k_{1})}}$$

today lies lius, Zhang] nd]

we need to conjecture the flavor symmetry in $\tilde{\mathcal{T}}$

 $\begin{array}{c} \textbf{(A, A)} \\ \textbf{(A, A)} \end{array} \begin{array}{c} \mathfrak{su}(k_1) \ \mathfrak{su}(k_2) \\ 2 \\ [m_1] \ [m_2] \end{array} \begin{array}{c} \mathfrak{su}(k_q) \\ \cdots \\ [m_q] \end{array}$

classical flavor symmetry: $\mathfrak{su}(m, m)$

$$\mathfrak{Su}(m_{q+1}) \supset \mathfrak{Su}\left(\frac{m_{q+1}}{2}\right) \oplus \mathfrak{Su}\left(\frac{m_{q+1}}{2}\right)$$

$$\mathbb{Z}_2 \text{ identifies these moment maps}$$

$$\underset{(m_{q+1})}{\overset{\mathfrak{su}(k_q)}{2}} \overset{\mathfrak{su}(k_2)}{\cdots} \overset{\mathfrak{su}(k_2)}{2} \overset{\mathfrak{su}(k_1)}{2} \\ (m_{q+1}) \bigoplus \bigoplus_{i=1}^{q} \mathfrak{Su}(m_i)^2 \bigoplus \mathfrak{u}(1)^{\ell} \\ (\mathbb{Z}_2 \text{ identifies left and} \\ right moment maps} \\ (m_i)^2 \mathfrak{Su}(m_i) \\ (m_$$

what happens to the additional moment maps in the adjoint of $\mathfrak{su}(m_{a+1})$?

s today alies lius, Zhang] nd]

we need to conjecture the flavor symmetry in $\widetilde{\mathcal{T}}$

$$(A, A) \qquad \begin{array}{c} \mathfrak{su}(k_{1}) \ \mathfrak{su}(k_{2}) \\ 2 \ 2 \\ m_{1} \end{bmatrix} \ m_{2} \end{bmatrix} \cdots \begin{array}{c} \mathfrak{su}(k_{q}) \ \mathfrak{su}(k_{q+1}) \ \mathfrak{su}(k_{q}) \\ m_{q+1} \end{bmatrix} \ m_{q} \end{bmatrix} \cdots \begin{array}{c} \mathfrak{su}(k_{2}) \ \mathfrak{su}(k_{1}) \\ 2 \ 2 \\ m_{q} \end{bmatrix} \ m_{q+1} \end{bmatrix} \\ (m_{q+1}) \ \mathfrak{su}(k_{2}) \ \mathfrak{su}(k_{1}) \\ (m_{q+1}) \ \mathfrak{su}(k_{2}) \\ m_{q+1} \end{bmatrix}$$

 $\mathfrak{Su}(m_{q+1}) \supset \mathfrak{Su}\left(\frac{1}{2}\right) \oplus \mathfrak{Su}\left(\frac{1}{2}\right)$

 \mathbb{Z}_2 identifies these

moment maps

what happens to the additional moment maps in the adjoint of $\mathfrak{su}(m_{q+1})$?

we need to conjecture the flavor symmetry in $\widetilde{\mathcal{T}}$

$$\begin{array}{c} \textbf{(A, A)} \\ \begin{array}{c} \mathfrak{su}(k_1) & \mathfrak{su}(k_2) \\ 2 & 2 \\ m_1 \end{bmatrix} & [m_2] \end{array} \begin{array}{c} \mathfrak{su}(k_q) & \mathfrak{su}(k_q) \\ \mathfrak{su}(k_1) & \mathfrak{su}(k_q) \\ 2 & 2 \\ m_q \end{bmatrix} \begin{array}{c} \mathfrak{su}(k_q) & \mathfrak{su}(k_q) \\ \mathfrak{su}(k_1) & \mathfrak{su}(k_1) \\ \mathfrak{su}(k_1) & \mathfrak{su}(k_1)$$

$$\mathfrak{Su}(m_{q+1}) \supset \mathfrak{Su}\left(\frac{m_{q+1}}{2}\right) \oplus \mathfrak{Su}\left(\frac{m_{q+1}}{2}\right)$$

 \mathbb{Z}_2 identifies these

moment maps

$$egin{aligned} \mathfrak{su}(m_{q+1}) &
ightarrow \mathfrak{su}\left(rac{m_{q+1}}{2}
ight) \oplus \mathfrak{su}\left(rac{m_{q+1}}{2}
ight) \ \mathbf{adj} &
ightarrow (\mathbf{adj},\mathbf{1}) \oplus (\mathbf{1},\mathbf{adj}) \oplus (\mathbf{1},\mathbf{1}) \oplus \left(rac{m_{q+1}}{2},rac{\overline{m_{q+1}}}{2}
ight) \oplus \left(rac{\overline{m_{q+1}}}{2},rac{m_{q+1}}{2}
ight) \end{aligned}$$

2

 $\mathbf{2}$

what happens to the additional moment maps in the adjoint of $\mathfrak{su}(m_{q+1})$?

$$\Rightarrow \mathfrak{su}\left(\frac{m_{q+1}}{2}\right) \text{ with moment maps in the}$$
$$\mathbf{adj} \oplus \mathbf{Sym}^2 \oplus \overline{\mathbf{Sym}^2} \oplus \mathbf{1}$$

 $\Rightarrow \mathfrak{usp}(m_{q+1})$ enhanced flavor!

we need to conjecture the flavor symmetry in $\widetilde{\mathcal{T}}$

 $\begin{array}{c} \textbf{(A, A)} \\ \textbf{(A, A)} \end{array} \begin{array}{c} \mathfrak{su}(k_1) \ \mathfrak{su}(k_2) \\ 2 \\ [m_1] \ [m_2] \end{array} \begin{array}{c} \mathfrak{su}(k_q) \\ \cdots \\ [m_q] \end{array}$

classical flavor symmetry:

classical flavor symmetry after discrete gauging:

$$\mathfrak{su}(k_{q+1})$$
 $\mathfrak{su}(k_q)$ $\mathfrak{su}(k_2)$ $\mathfrak{su}(k_1)$
 $\begin{array}{cccc} 2 & 2 & \cdots & 2 & 2 \\ m_{q+1} & m_q \end{array}$ $m_2 & m_1 \end{array}$

$$\mathfrak{su}(m_{q+1}) \bigoplus \bigoplus_{i=1}^{q} \mathfrak{su}(m_{i})^{2} \bigoplus \mathfrak{u}(1)^{\ell}$$
$$\mathfrak{usp}(m_{q+1}) \oplus \bigoplus_{i=1}^{q} \mathfrak{su}(m_{i})$$
(ignoring

we can do the same thing for (D, D) conformal matter

 $[m_1] \quad [m_2] \quad [m_3] \quad [m_{q-1}] \quad [m_q] \quad [m_{q-1}] \quad [m_3] \quad [m_2] \quad [m_1]$

we can do the same thing for (D, D) conformal matter

$$\mathbb{Z}_{2} \text{ identifies these} \qquad \begin{array}{ccc} 1 & 4 & 1 & \cdots & 4 \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{2}] & [m_{1}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{1}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{q-1}] \\ [m_{1}] & [m_{1}] & [m_{2}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{1}] & [m_{2}] & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{1}] & [m_{2}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{3}] & & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{1}] & [m_{2}] & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{1}] & [m_{2}] & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{1}] & [m_{2}] & [m_{1}] & [m_{2}] & [m_{1}] \\ [m_{1}] & [m_{2}] & [m_{1}] & [m_$$

$$\mathfrak{f}_i(m_i) = \begin{cases} \mathfrak{so}(m_i) & \text{if } i \text{ odd,} \\ \mathfrak{usp}(m_i) & \text{if } i \text{ even} \end{cases}$$

- we can do the same thing for (D, D) conformal matter
 - $\begin{array}{cccc} \mathfrak{usp}(2k_1) \,\,\mathfrak{so}(k_2) \,\,\mathfrak{usp}(2k_3) & \mathfrak{so}(k_{q-1}) \\ 1 & 4 & 1 & \cdots & 4 \end{array}$ $[m_1]$ $[m_2]$ $[m_3]$ $[m_{q-1}]$
 - the only subtle case is
 - what happens on the central (-1)-curve?

$$\mathfrak{so}\left(\frac{m_q}{2}\right) \oplus \mathfrak{so}\left(\frac{m_q}{2}\right) \to \mathfrak{so}(m_q)$$

 \mathbb{Z}_2 identifies these

moment maps

- we can do the same thing for (D, D) conformal matter
 - $\begin{array}{cccc} \mathfrak{usp}(2k_1) \,\,\mathfrak{so}(k_2) \,\,\mathfrak{usp}(2k_3) & \mathfrak{so}(k_{q-1}) \\ 1 & 4 & 1 & \cdots & 4 \end{array}$ $[m_1]$ $[m_2]$ $[m_3]$ $[m_{q-1}]$
 - the only subtle case is what happens on the central (-1)-curve?

$$\mathfrak{so}\left(\frac{m_q}{2}\right) \oplus \mathfrak{so}\left(\frac{m_q}{2}\right) \to \mathfrak{so}(m_q)$$

 \mathbb{Z}_2 identifies these moment maps $\Rightarrow \mathfrak{so}\left(\frac{m_{q+1}}{2}\right)$ with moment maps in the $\mathbf{adj} \oplus \mathbf{Sym}^2 \oplus \mathbf{1}$

- we can do the same thing for (D, D) conformal matter
 - $\begin{array}{cccc} \mathfrak{usp}(2k_1) \,\,\mathfrak{so}(k_2) \,\,\mathfrak{usp}(2k_3) & \mathfrak{so}(k_{q-1}) \\ 1 & 4 & 1 & \cdots & 4 \end{array}$ $[m_1]$ $[m_2]$ $[m_3]$ $[m_{q-1}]$
 - the only subtle case is what happens on the central (-1)-curve?

$$\mathfrak{so}\left(\frac{m_q}{2}\right) \oplus \mathfrak{so}\left(\frac{m_q}{2}\right) \to \mathfrak{so}(m_q)$$

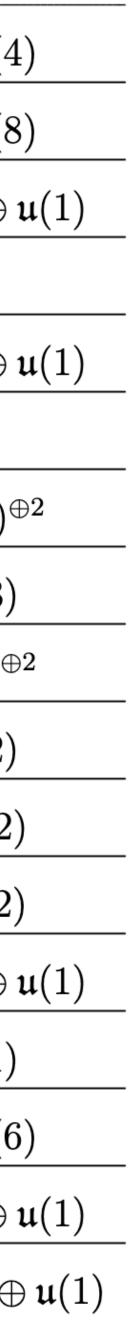
 \mathbb{Z}_2 identifies these moment maps $\Rightarrow \mathfrak{so}\left(\frac{m_{q+1}}{2}\right)$ with moment maps in the $\mathbf{adj} \oplus \mathbf{Sym}^2 \oplus \mathbf{1}$ $\Rightarrow \mathfrak{u}(m_{q+1})$ enhanced flavor!

in this way: we propose the flavor symmetry for almost all discretely-gauged Higgsed (A, A) and (D, D) conformal matter

- (there are precisely 3 examples which require a more subtle analysis)

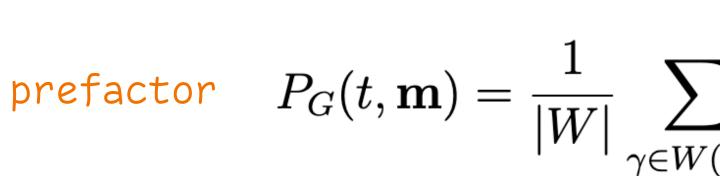
		Tensor Branch)	$\mathfrak{f}_{\mathbb{Z}_2}$
1	$A_3^{\mathfrak{so}(6)}([3,1^3],[3,1^3])$	$\begin{array}{cccc}\mathfrak{su}(2) & \mathfrak{su}(4) & \mathfrak{su}(2) \\ & 2 & 2 & 2 \end{array}$	$\mathfrak{su}(4)$	$\mathfrak{usp}(4)$
2	$A_1^{\mathfrak{so}(6)}([1^6], [1^6])$	$\overset{\mathfrak{su}(4)}{2}$	$\mathfrak{su}(8)$	usp (8)
3	$A_5^{\mathfrak{so}(6)}([3^2],[3^2])$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)\oplus\mathfrak{l}$
4	$A_2^{\mathfrak{so}(8)}([3^2,1^2],[3^2,1^2])$	${\mathfrak{su}}(3)$ ${\mathfrak{su}}(3)$ 3 1 3	$\mathfrak{su}(3)^{\oplus 2}$?
5	$A_4^{\mathfrak{so}(8)}([5,1^3],[5,1^3])$	$ \begin{array}{cccc} \mathfrak{su}(2) & \mathfrak{so}(7) & \mathfrak{so}(7) & \mathfrak{su}(2) \\ 2 & 3 & 1 & 3 & 2 \end{array} \end{array} $	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{l}$
6	$A_4^{\mathfrak{so}(8)}([5,3],[5,3])$	$\stackrel{\mathfrak{{su}}(2)}{2} { \mathfrak{g}}_2 { \mathfrak{g}}_2 {\mathfrak{{su}}}_2(2) \ 2 3 1 3 2$	$\mathfrak{su}(2)$?
7	$A_3^{\mathfrak{so}(8)}([4,2,1^2],[4,2,1^2])$	$\stackrel{\mathfrak{su}(3)}{3} \stackrel{\mathfrak{so}(8)}{1} \stackrel{\mathfrak{su}(3)}{4} \stackrel{\mathfrak{su}(3)}{3}$	$\mathfrak{so}(2)^{\oplus 4}$	$\mathfrak{so}(2)^\oplus$
8	$A_2^{\mathfrak{so}(10)}([3^3,1],[3^3,1])$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{so}(6)$	$\mathfrak{u}(3)$
9	$A_4^{\mathfrak{so}(10)}([5,3,1^2],[5,3,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{so}(9)$ $\mathfrak{su}(2)$ $\mathfrak{so}(9)$ $\mathfrak{su}(3)$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{u}(1)^{\oplus 3}$	$\mathfrak{u}(1)^{\oplus 2}$
10	$A_4^{\mathfrak{so}(10)}([5^2],[5^2])$	$\mathfrak{su}(2)$ $\mathfrak{so}(7)$ $\mathfrak{su}(2)$ $\mathfrak{so}(7)$ $\mathfrak{su}(2)$ 2 3 1 3 2	$\mathfrak{so}(4)$	$\mathfrak{u}(2)$
11	$A_3^{\mathfrak{so}(10)}([4,3,2,1],[4,3,2,1])$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{su}(2)^{\oplus 2}$	$\mathfrak{su}(2)$
12	$A_5^{\mathfrak{so}(10)}([5^2],[5^2])$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{so}(2)^{\oplus 2}$	$\mathfrak{so}(2)$
13	$A_6^{\mathfrak{so}(10)}([7,1^3],[7,1^3])$	$ \begin{smallmatrix} \mathfrak{su}(2) \ \mathfrak{so}(7) & \mathfrak{so}(9) \ \mathfrak{su}(2) \ \mathfrak{so}(9) & \mathfrak{so}(9) & \mathfrak{so}(7) \ \mathfrak{su}(2) \\ 2 & 3 & 1 & 4 & 1 & 4 & 1 & 3 & 2 \end{smallmatrix} $	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{l}$
14	$A_6^{\mathfrak{so}(10)}([7,3],[7,3])$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathfrak{u}(1)$	$\mathfrak{u}(1)$
15	$A_1^{\mathfrak{su}(3)}([1^3],[1^3])$	su(3) 2	$\mathfrak{su}(6)$	usp (6)
16	$A_3^{\mathfrak{su}(3)}([2,1],[2,1])$	$\mathfrak{su}(2)$ $\mathfrak{su}(3)$ $\mathfrak{su}(2)$ 2 2 2	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)\oplus\mathfrak{i}$
17	$A_3^{\mathfrak{su}(4)}([2,1^2],[2,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{su}(4)$ $\mathfrak{su}(3)$ 2 2 2	$\mathfrak{su}(2)^{\oplus 3} \oplus \mathfrak{u}(1)^{\oplus 2}$	$ \mathfrak{su}(2)^{\oplus 2} \oplus$

Higgsed conformal matter where the magnetic quiver is "sufficiently small"



Given a 3d quiver \mathcal{X} , the Coulomb branch Hilbert series is

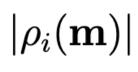
Weyl group of gauge group



 $\operatorname{HS}[\operatorname{CB of} \mathcal{X}](t) = \frac{1}{|W|} \sum_{\mathbf{m}} \sum_{\gamma \in W(\mathbf{m})} \frac{t^{2\Delta(\mathbf{m})}}{\det(1 - t^2\gamma)}$ conformal dimension of monopole operator with magnetic flux m $\Delta(\mathbf{m}) = -\sum_{lpha \in \Delta_+} |lpha(\mathbf{m})| + rac{1}{2} \sum_{i=1}^{N_f} \sum_{
ho_i \in \mathcal{R}_i} |
ho_i(\mathbf{m})|$ vectors hypers

> counts gauge-invariant operators of gauge group unbroken by m

$$\sum_{W(\mathbf{m})} rac{1}{\det(\mathbb{1} - t^2 \gamma)}$$



Given a wreathed 3d quiver $\widetilde{\mathcal{X}}$, the Coulomb branch Hilbert series is [Bourget, Hanany, Miketa] $\operatorname{HS}\left[\operatorname{CB of} \widetilde{\mathcal{X}}\right](t) = \frac{1}{|W_{\Gamma}|} \sum_{\mathbf{n}} \sum_{\gamma \in W_{\Gamma}(\mathbf{n})} \frac{t^{2\Delta(\mathbf{n})}}{\det(1 - t^{2}\gamma)}$ conformal dimension of wreathed Weyl group $W \ge$ monopole operator with magnetic flux n 1 1

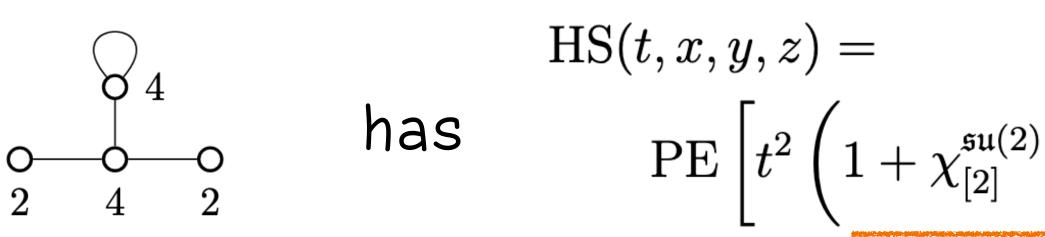
wreathed prefactor $P_{G_{I}\Gamma}($

$$(t,\mathbf{n}) = rac{1}{|W_{\Gamma}(\mathbf{n})|} \sum_{\gamma \in W_{\Gamma}(\mathbf{n})} rac{1}{\det(1-t^2\gamma)}$$

prefactors for \mathbb{Z}_2 wreathing involving U(K), SO(K), and USp(2K) nodes [CL, Lepper, Mininno]

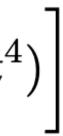
let's consider a unitary example [CL, Lepper, Mininno]

let's consider a unitary example [CL, Lepper, Mininno]

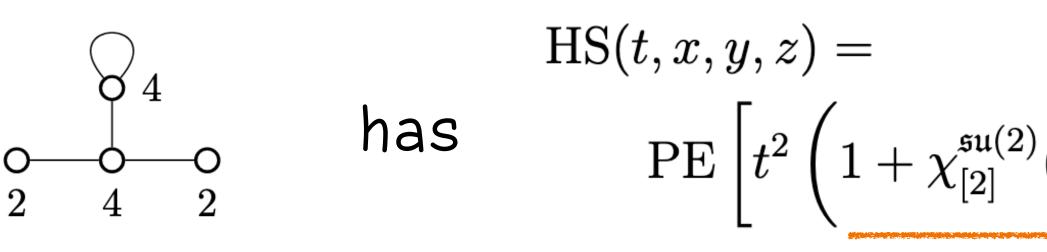


this is the adjoint representation of $\mathfrak{su}(4)$ under $\mathfrak{su}(4) \to \mathfrak{su}(2)_x \oplus \mathfrak{su}(2)_y \oplus \mathfrak{u}(1)_z$, ${f 15} o ({f 2},{f 2})_2 \oplus ({f 3},{f 1})_0 \oplus ({f 1},{f 3})_0 \oplus ({f 1},{f 1})_0 \oplus ({f 2},{f 2})_{-2}$

$$\chi^{(2)}(x) + \chi^{\mathfrak{su}(2)}_{[2]}(y) + \left(z^2 + rac{1}{z^2}
ight)\chi^{\mathfrak{su}(2)}_{[1]}(x)\chi^{\mathfrak{su}(2)}_{[1]}(y) + \mathcal{O}(t)$$



let's consider a unitary example [CL, Lepper, Mininno]



wreathing the $\mathfrak{u}(2)$ s gives

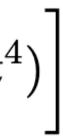
 $\mathrm{HS}_{\wr\mathbb{Z}_2}(t,x,z)=\mathrm{PE}$

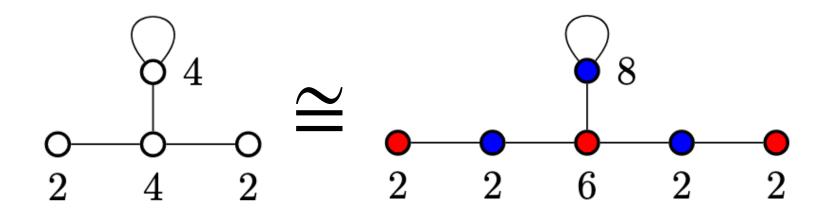
this is the adjoint representation of $\mathfrak{usp}(4)$ under $\mathfrak{usp}(4) \to \mathfrak{su}(2) \oplus \mathfrak{u}(1)$, $\mathbf{10}
ightarrow \mathbf{3}_2 \oplus \mathbf{3}_{-2} \oplus \mathbf{3}_0 \oplus \mathbf{1}_0$

$$\chi^{(2)}(x) + \chi^{\mathfrak{su}(2)}_{[2]}(y) + \left(z^2 + \frac{1}{z^2}\right)\chi^{\mathfrak{su}(2)}_{[1]}(x)\chi^{\mathfrak{su}(2)}_{[1]}(y) + \mathcal{O}(t)$$

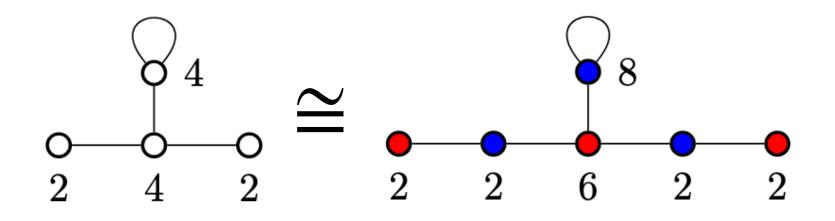
this is the adjoint representation of $\mathfrak{su}(4)$ under $\mathfrak{su}(4) \to \mathfrak{su}(2)_x \oplus \mathfrak{su}(2)_y \oplus \mathfrak{u}(1)_z$, ${f 15} o ({f 2},{f 2})_2 \oplus ({f 3},{f 1})_0 \oplus ({f 1},{f 3})_0 \oplus ({f 1},{f 1})_0 \oplus ({f 2},{f 2})_{-2}$

$$\left[t^2 \left(1 + \chi_{[2]}^{\mathfrak{su}(2)}(x) + \left(z^2 + \frac{1}{z^2} \right) \chi_{[2]}^{\mathfrak{su}(2)}(x) \right) + \mathcal{O}(t^4) \right]$$





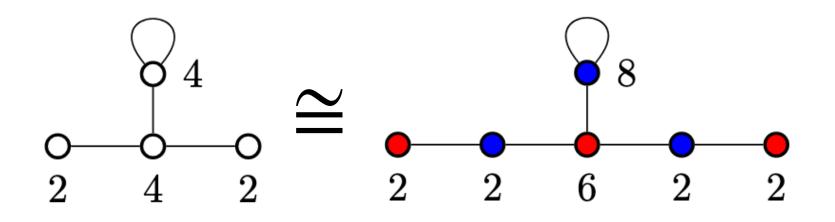
using $\mathfrak{su}(4) \cong \mathfrak{so}(6)$ we also have an orthosymplectic description [CL, Lepper, Minimo]



using $\mathfrak{su}(4) \cong \mathfrak{so}(6)$ we also have an orthosymplectic description [CL, Lepper, Minimo]

unwreathed Hilbert series: $\operatorname{PE}\left[t^2(7+8\omega)+t^4(13+16\omega)+\mathcal{O}(t^6)\right]$ dimension of $\mathfrak{su}(4)$

wreathed Hilbert series: $PE\left[t^2(4+6\omega)+t^4(19+18\omega)+\mathcal{O}(t^6)
ight]$ dimension of $\mathfrak{usp}(4)$



using $\mathfrak{su}(4) \cong \mathfrak{so}(6)$ we also have an orthosymplectic description [CL, Lepper, Minimo]

unwreathed Hilbert series: $\operatorname{PE}\left[t^2(7+8\omega)+t^4(13+16\omega)+\mathcal{O}(t^6)\right]$ dimension of $\mathfrak{su}(4)$

- wreathed Hilbert series: $PE\left[t^2(4+6\omega)+t^4(19+18\omega)+\mathcal{O}(t^6)\right]$ dimension of $\mathfrak{usp}(4)$
- but this is precisely the magnetic quiver for a conformal matter theory: $A_3^{\mathfrak{so}(6)}([3,1^3],[3,1^3])!$

#	Conformal Matter	Tensor Branch	f	$\mathfrak{f}_{\mathbb{Z}_2}$	
1	$A_3^{\mathfrak{so}(6)}([3,1^3],[3,1^3])$	$\begin{array}{ccc}\mathfrak{su}(2) & \mathfrak{su}(4) & \mathfrak{su}(2) \\ & 2 & 2 & 2 \end{array}$	$\mathfrak{su}(4)$	$\mathfrak{usp}(4)$	$\mathcal{T}_M = \mathcal{T}_M \wr \Gamma \checkmark$
2	$A_1^{\mathfrak{so}(6)}([1^6],[1^6])$	$ \begin{array}{c} \mathfrak{su}(4)\\ \end{array} $	$\mathfrak{su}(8)$	$\mathfrak{usp}(8)$	
3	$A_5^{\mathfrak{so}(6)}([3^2],[3^2])$	$\begin{array}{c c} \mathfrak{su}(2) \ \mathfrak{su}(3) \ \mathfrak{su}(4) \ \mathfrak{su}(3) \ \mathfrak{su}(2) \\ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \end{array}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	
4	$A_2^{\mathfrak{so}(8)}([3^2,1^2],[3^2,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{su}(3)$ 3 1 3	$\mathfrak{su}(3)^{\oplus 2}$?	
5	$A_4^{\mathfrak{so}(8)}([5,1^3],[5,1^3])$	$\begin{smallmatrix}\mathfrak{su}(2)&\mathfrak{so}(7)&\mathfrak{so}(7)&\mathfrak{su}(2)\\2&3&1&3&2\end{smallmatrix}$	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	
6	$A_4^{\mathfrak{so}(8)}([5,3],[5,3])$	$\begin{smallmatrix}\mathfrak{su}(2)&\mathfrak{g}_2&\mathfrak{g}_2&\mathfrak{su}(2)\\2&3&1&3&2\end{smallmatrix}$	$\mathfrak{su}(2)$?	
7	$A_3^{\mathfrak{so}(8)}([4,2,1^2],[4,2,1^2])$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathfrak{so}(2)^{\oplus 4}$	$\mathfrak{so}(2)^{\oplus 2}$	
8	$A_2^{\mathfrak{so}(10)}([3^3,1],[3^3,1])$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{so}(6)$	$\mathfrak{u}(3)$	
9	$A_4^{\mathfrak{so}(10)}([5,3,1^2],[5,3,1^2])$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathfrak{u}(1)^{\oplus 3}$	$\mathfrak{u}(1)^{\oplus 2}$	
10	$A_4^{\mathfrak{so}(10)}([5^2],[5^2])$	$\begin{array}{c c}\mathfrak{su}(2) \ \mathfrak{so}(7) \ \mathfrak{su}(2) \ \mathfrak{so}(7) \ \mathfrak{su}(2) \\ 2 \ 3 \ 1 \ 3 \ 2 \end{array}$	$\mathfrak{so}(4)$	$\mathfrak{u}(2)$	
11	$A_3^{\mathfrak{so}(10)}([4,3,2,1],[4,3,2,1])$	$\begin{smallmatrix} \mathfrak{g}_2 & \mathfrak{su}(2) & \mathfrak{so}(10) & \mathfrak{su}(2) & \mathfrak{g}_2 \\ 3 & 1 & 4 & 1 & 3 \end{smallmatrix}$	$\mathfrak{su}(2)^{\oplus 2}$	$\mathfrak{su}(2)$	
12	$A_5^{\mathfrak{so}(10)}([5^2],[5^2])$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathfrak{so}(2)^{\oplus 2}$	$\mathfrak{so}(2)$	
13	$A_6^{\mathfrak{so}(10)}([7,1^3],[7,1^3])$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	
14	$A_6^{\mathfrak{so}(10)}([7,3],[7,3])$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathfrak{u}(1)$	$\mathfrak{u}(1)$	
15	$A_1^{\mathfrak{su}(3)}([1^3],[1^3])$	su(3) 2	$\mathfrak{su}(6)$	$\mathfrak{usp}(6)$	
16	$A_3^{\mathfrak{{su}}(3)}([2,1],[2,1])$	$\begin{array}{c c} \mathfrak{su}(2) & \mathfrak{su}(3) & \mathfrak{su}(2) \\ 2 & 2 & 2 \end{array}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	
17	$A_3^{\mathfrak{su}(4)}([2,1^2],[2,1^2])$	$\begin{array}{c c} \mathfrak{su}(3) \ \mathfrak{su}(4) \ \mathfrak{su}(3) \\ 2 \ 2 \ 2 \\ 2 \\ 2 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$	$\mathfrak{su}(2)^{\oplus 3} \oplus \mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	

#	Conformal Matter	Tensor Branch	f	$\mathfrak{f}_{\mathbb{Z}_2}$	
1	$A_3^{\mathfrak{so}(6)}([3,1^3],[3,1^3])$	$\mathfrak{su}(2)$ $\mathfrak{su}(4)$ $\mathfrak{su}(2)$ 2 2 2	$\mathfrak{su}(4)$	$\mathfrak{usp}(4)$	$\checkmark \mathcal{T}_M = \mathcal{T}_M \wr \Gamma \checkmark$
2	$A_1^{\mathfrak{so}(6)}([1^6],[1^6])$	$\overset{\mathfrak{su}(4)}{2}$	$\mathfrak{su}(8)$	$\mathfrak{usp}(8)$	
3	$A_5^{\mathfrak{so}(6)}([3^2],[3^2])$	$\begin{array}{c c}\mathfrak{su}(2) \ \mathfrak{su}(3) \ \mathfrak{su}(4) \ \mathfrak{su}(3) \ \mathfrak{su}(2) \\ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \end{array}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	
4	$A_2^{\mathfrak{so}(8)}([3^2,1^2],[3^2,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{su}(3)$ 3 1 3	$\mathfrak{su}(3)^{\oplus 2}$?	
5	$A_4^{\mathfrak{so}(8)}([5,1^3],[5,1^3])$	${\mathfrak{su}}_{(2)} {\mathfrak{so}}_{(7)} {\mathfrak{so}}_{(7)} {\mathfrak{su}}_{(2)} \ 2 3 1 3 2$	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	$\operatorname{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[4t^2 + t^4(6\omega + 11) + \mathcal{O}(t^5)\right]$
6	$A_4^{\mathfrak{so}(8)}([5,3],[5,3])$	$\stackrel{\mathfrak{su}(2)}{2} { \mathfrak{g}}_2 { \mathfrak{g}}_2 { \mathfrak{su}(2) \atop 3} { \mathfrak{1}} { \mathfrak{3}} { \mathfrak{2}}$	$\mathfrak{su}(2)$?	
7	$A_3^{\mathfrak{so}(8)}([4,2,1^2],[4,2,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{so}(8)$ $\mathfrak{su}(3)$ 3 1 4 1 3	$\mathfrak{so}(2)^{\oplus 4}$	$\mathfrak{so}(2)^{\oplus 2}$	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[2t^2 + t^4(15 + 6\omega) + \mathcal{O}(t^5)\right]$
8	$A_2^{\mathfrak{so}(10)}([3^3,1],[3^3,1])$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{so}(6)$	$\mathfrak{u}(3)$	$\operatorname{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[9t^2 + 6\omega t^3 + 40t^4 + \mathcal{O}(t^5)\right]$
9	$A_4^{\mathfrak{so}(10)}([5,3,1^2],[5,3,1^2])$	$ \begin{smallmatrix} \mathfrak{su}(3) & \mathfrak{so}(9) & \mathfrak{su}(2) & \mathfrak{so}(9) & \mathfrak{su}(3) \\ 3 & 1 & 4 & 1 & 4 & 1 & 3 \end{smallmatrix} $	$\mathfrak{u}(1)^{\oplus 3}$	$\mathfrak{u}(1)^{\oplus 2}$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[2t^2 + 9t^4 + \mathcal{O}(t^5)\right]$
10	$A_4^{\mathfrak{so}(10)}([5^2],[5^2])$	$ \begin{array}{c c} \mathfrak{su}(2) \ \mathfrak{so}(7) \ \mathfrak{su}(2) \ \mathfrak{so}(7) \ \mathfrak{su}(2) \\ 2 \ 3 \ 1 \ 3 \ 2 \end{array} $	$\mathfrak{so}(4)$	$\mathfrak{u}(2)$	$\operatorname{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[4t^2 + 2\omega t^3 + 10t^4 + \mathcal{O}(t^5)\right]$
11	$A_3^{\mathfrak{so}(10)}([4,3,2,1],[4,3,2,1])$	$ \begin{smallmatrix} \mathfrak{g}_2 & \mathfrak{su}(2) & \mathfrak{so}(10) & \mathfrak{su}(2) & \mathfrak{g}_2 \ 3 & 1 & 4 & 1 & 3 \end{smallmatrix} $	$\mathfrak{su}(2)^{\oplus 2}$	$\mathfrak{su}(2)$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[3t^2 + 22t^4 + \mathcal{O}(t^5) ight]$
12	$A_5^{\mathfrak{so}(10)}([5^2],[5^2])$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathfrak{so}(2)^{\oplus 2}$	$\mathfrak{so}(2)$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[t^2 + 8t^4 + \mathcal{O}(t^5) ight]$
13	$A_6^{\mathfrak{so}(10)}([7,1^3],[7,1^3])$	$ \begin{smallmatrix} \mathfrak{su}(2) & \mathfrak{so}(7) & \mathfrak{so}(9) & \mathfrak{su}(2) & \mathfrak{so}(9) & \mathfrak{so}(7) & \mathfrak{su}(2) \\ 2 & 3 & 1 & 4 & 1 & 4 & 1 & 3 & 2 \end{smallmatrix} $	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[4t^2 + 9t^4 + \mathcal{O}(t^5)\right]$
14	$A_6^{\mathfrak{so}(10)}([7,3],[7,3])$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathfrak{u}(1)$	$\mathfrak{u}(1)$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[t^2 + 4t^4 + \mathcal{O}(t^5)\right]$
15	$A_1^{\mathfrak{su}(3)}([1^3],[1^3])$	su(3) 2	$\mathfrak{su}(6)$	$\mathfrak{usp}(6)$	
16	$A_3^{\mathfrak{su}(3)}([2,1],[2,1])$	$\begin{array}{c} \mathfrak{su}(2) \ \mathfrak{su}(3) \ \mathfrak{su}(2) \\ 2 \ 2 \ 2 \end{array}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2) \oplus \mathfrak{u}(1)$	
17	$A_3^{\mathfrak{su}(4)}([2,1^2],[2,1^2])$	$\mathfrak{su}(3) \mathfrak{su}(4) \mathfrak{su}(3)$ $2 \ 2 \ 2$	$\mathfrak{su}(2)^{\oplus 3} \oplus \mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	

#	Conformal Matter	Tensor Branch	f	$\mathfrak{f}_{\mathbb{Z}_2}$	
1	$A_3^{\mathfrak{so}(6)}([3,1^3],[3,1^3])$	$\mathfrak{su}(2)$ $\mathfrak{su}(4)$ $\mathfrak{su}(2)$ 2 2 2	$\mathfrak{su}(4)$	$\mathfrak{usp}(4)$	$\mathcal{T}_M = \mathcal{T}_M \wr \Gamma \checkmark$
2	$A_1^{\mathfrak{so}(6)}([1^6],[1^6])$	$\overset{\mathfrak{su}(4)}{2}$	$\mathfrak{su}(8)$	$\mathfrak{usp}(8)$	
3	$A_5^{\mathfrak{so}(6)}([3^2],[3^2])$	$\mathfrak{su}(2)$ $\mathfrak{su}(3)$ $\mathfrak{su}(4)$ $\mathfrak{su}(3)$ $\mathfrak{su}(2)$ 2 2 2 2 2	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	
4	$A_2^{\mathfrak{so}(8)}([3^2,1^2],[3^2,1^2])$	${\mathfrak{su}}(3)$ ${\mathfrak{su}}(3)$ ${f 3}$ ${f 1}$ ${f 3}$	$\mathfrak{su}(3)^{\oplus 2}$?	
5	$A_4^{\mathfrak{so}(8)}([5,1^3],[5,1^3])$	$ \begin{array}{cccc} \mathfrak{su}(2) \ \mathfrak{so}(7) & \mathfrak{so}(7) \ \mathfrak{su}(2) \\ 2 & 3 & 1 & 3 & 2 \end{array} \end{array} $	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[4t^2 + t^4(6\omega + 11) + \mathcal{O}(t^5)\right]$
6	$A_4^{\mathfrak{so}(8)}([5,3],[5,3])$	$\stackrel{\mathfrak{{su}}(2)}{2} { \stackrel{\mathfrak{g}_2}{3}} { \stackrel{\mathfrak{{g}}_2}{1}} { \stackrel{\mathfrak{{su}}(2)}{3}} { 2 }$	$\mathfrak{su}(2)$?	
7	$A_3^{\mathfrak{so}(8)}([4,2,1^2],[4,2,1^2])$	$\stackrel{\mathfrak{{su}}(3)}{3} \stackrel{\mathfrak{{so}}(8)}{1} \stackrel{\mathfrak{{su}}(3)}{4} \stackrel{\mathfrak{{su}}(3)}{3}$	$\mathfrak{so}(2)^{\oplus 4}$	$\mathfrak{so}(2)^{\oplus 2}$	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[2t^2 + t^4(15 + 6\omega) + \mathcal{O}(t^5)\right]$
8	$A_2^{\mathfrak{so}(10)}([3^3,1],[3^3,1])$	$\stackrel{\mathfrak{g}_2}{3} \stackrel{\mathfrak{su}(2)}{1} \stackrel{\mathfrak{g}_2}{3}$	$\mathfrak{so}(6)$	$\mathfrak{u}(3)$	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[9t^2 + 6\omega t^3 + 40t^4 + \mathcal{O}(t^5)\right]$
9	$A_4^{\mathfrak{so}(10)}([5,3,1^2],[5,3,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{so}(9)$ $\mathfrak{su}(2)$ $\mathfrak{so}(9)$ $\mathfrak{su}(3)$ 3 1 4 1 4 1 3	$\mathfrak{u}(1)^{\oplus 3}$	$\mathfrak{u}(1)^{\oplus 2}$	$\operatorname{HS}_{\wr \mathbb{Z}_{2}}(t,\omega) = \operatorname{PE}\left[2t^{2} + 9t^{4} + \mathcal{O}(t^{5})\right]$
10	$A_4^{\mathfrak{so}(10)}([5^2],[5^2])$	${\mathfrak{su}}{}^{(2)}$ ${\mathfrak{so}}{}^{(7)}$ ${\mathfrak{su}}{}^{(2)}$ ${\mathfrak{so}}{}^{(7)}$ ${\mathfrak{su}}{}^{(2)}$ ${2 \atop 3 \atop 1 \atop 3 \atop 2 \atop 2$	$\mathfrak{so}(4)$	$\mathfrak{u}(2)$	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[4t^2 + 2\omega t^3 + 10t^4 + \mathcal{O}(t^5)\right]$
11	$A_3^{\mathfrak{so}(10)}([4,3,2,1],[4,3,2,1])$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{su}(2)^{\oplus 2}$	$\mathfrak{su}(2)$	$\operatorname{HS}_{\wr \mathbb{Z}_{2}}(t,\omega) = \operatorname{PE}\left[3t^{2} + 22t^{4} + \mathcal{O}(t^{5})\right]$
12	$A_5^{\mathfrak{so}(10)}([5^2],[5^2])$	$ \begin{smallmatrix} \mathfrak{su}(2) & \mathfrak{so}(7) & \mathfrak{su}(2) & \mathfrak{so}(10) & \mathfrak{su}(2) & \mathfrak{so}(7) & \mathfrak{su}(2) \\ 2 & 3 & 1 & 4 & 1 & 3 & 2 \end{smallmatrix} $	$\mathfrak{so}(2)^{\oplus 2}$	$\mathfrak{so}(2)$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[t^2 + 8t^4 + \mathcal{O}(t^5)\right]$
13	$A_6^{\mathfrak{so}(10)}([7,1^3],[7,1^3])$	$ \begin{smallmatrix} \mathfrak{su}(2) & \mathfrak{so}(7) & \mathfrak{so}(9) & \mathfrak{su}(2) & \mathfrak{so}(9) & \mathfrak{so}(7) & \mathfrak{su}(2) \\ 2 & 3 & 1 & 4 & 1 & 4 & 1 & 3 & 2 \end{smallmatrix} $	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[4t^2 + 9t^4 + \mathcal{O}(t^5)\right]$
14	$A_6^{\mathfrak{so}(10)}([7,3],[7,3])$	$ \begin{smallmatrix} \mathfrak{su}(2) & \mathfrak{g}_2 & \mathfrak{so}(9) & \mathfrak{su}(2) & \mathfrak{so}(9) & \mathfrak{g}_2 & \mathfrak{su}(2) \\ 2 & 3 & 1 & 4 & 1 & 4 & 1 & 3 & 2 \end{smallmatrix} $	$\mathfrak{u}(1)$	$\mathfrak{u}(1)$	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[t^2 + 4t^4 + \mathcal{O}(t^5)\right]$
15	$A_1^{\mathfrak{su}(3)}([1^3],[1^3])$	su(3) 2	$\mathfrak{su}(6)$	$\mathfrak{usp}(6)$	
_16	$A_3^{\mathfrak{su}(3)}([2,1],[2,1])$	$\begin{array}{c}\mathfrak{su}(2) \ \mathfrak{su}(3) \ \mathfrak{su}(2) \\ 2 \ 2 \ 2 \end{array}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	
17	$A_3^{\mathfrak{su}(4)}([2,1^2],[2,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{su}(4)$ $\mathfrak{su}(3)$ 2 2 2	$\mathfrak{su}(2)^{\oplus 3} \oplus \mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	

#	Conformal Matter	Tensor Branch	f	$\mathfrak{f}_{\mathbb{Z}_2}$	
1	$A_3^{\mathfrak{so}(6)}([3,1^3],[3,1^3])$	$\mathfrak{su}(2)$ $\mathfrak{su}(4)$ $\mathfrak{su}(2)$ 2 2 2	$\mathfrak{su}(4)$	$\mathfrak{usp}(4)$	$\mathcal{T}_M = \mathcal{T}_M \wr \Gamma \checkmark$
2	$A_1^{\mathfrak{so}(6)}([1^6],[1^6])$	$\overset{\mathfrak{su}(4)}{2}$	$\mathfrak{su}(8)$	$\mathfrak{usp}(8)$	
3	$A_5^{\mathfrak{so}(6)}([3^2],[3^2])$	$\mathfrak{su}(2)$ $\mathfrak{su}(3)$ $\mathfrak{su}(4)$ $\mathfrak{su}(3)$ $\mathfrak{su}(2)$ 2 2 2 2 2	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	
4	$A_2^{\mathfrak{so}(8)}([3^2,1^2],[3^2,1^2])$	${\mathfrak{su}}(3)$ ${\mathfrak{su}}(3)$ ${f 3}$ ${f 1}$ ${f 3}$	$\mathfrak{su}(3)^{\oplus 2}$?	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[t^2(6\omega+5) + t^4\left(26\omega+29\right) + \mathcal{O}\left(t^5\right)\right]$
5	$A_4^{\mathfrak{so}(8)}([5,1^3],[5,1^3])$	$\stackrel{\mathfrak{su}(2)}{2} \stackrel{\mathfrak{so}(7)}{3} \stackrel{\mathfrak{so}(7)}{1} \stackrel{\mathfrak{su}(2)}{3}$	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	$\operatorname{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[4t^2 + t^4(6\omega + 11) + \mathcal{O}(t^5)\right]$
6	$A_4^{\mathfrak{so}(8)}([5,3],[5,3])$	$\stackrel{\mathfrak{{su}}(2)}{2} { \mathfrak{g}}_2 { \mathfrak{g}}_2 { \mathfrak{{su}}(2) \atop 3} 1 { \mathfrak{Z}} { \mathfrak{Z}}$	$\mathfrak{su}(2)$?	$\operatorname{HS}_{\mathbb{Z}_{2}}(t,\omega) = \operatorname{PE}\left[t^{2}(2\omega+1) + t^{4}(6\omega+8) + \mathcal{O}\left(t^{5}\right)\right]$
7	$A_3^{\mathfrak{so}(8)}([4,2,1^2],[4,2,1^2])$	$\stackrel{\mathfrak{{su}}(3)}{3} \stackrel{\mathfrak{{so}}(8)}{1} \stackrel{\mathfrak{{su}}(3)}{4} \stackrel{\mathfrak{{su}}(3)}{3}$	$\mathfrak{so}(2)^{\oplus 4}$	$\mathfrak{so}(2)^{\oplus 2}$	$\operatorname{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[2t^2 + t^4(15 + 6\omega) + \mathcal{O}(t^5)\right]$
8	$A_2^{\mathfrak{so}(10)}([3^3,1],[3^3,1])$	$\stackrel{\mathfrak{g}_2}{3} \stackrel{\mathfrak{su}(2)}{1} \stackrel{\mathfrak{g}_2}{3}$	$\mathfrak{so}(6)$	$\mathfrak{u}(3)$	$\operatorname{HS}_{\wr \mathbb{Z}_{2}}(t,\omega) = \operatorname{PE}\left[9t^{2} + 6\omega t^{3} + 40t^{4} + \mathcal{O}(t^{5})\right]$
9	$A_4^{\mathfrak{so}(10)}([5,3,1^2],[5,3,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{so}(9)$ $\mathfrak{su}(2)$ $\mathfrak{so}(9)$ $\mathfrak{su}(3)$ 3 1 4 1 4 1 3	$\mathfrak{u}(1)^{\oplus 3}$	$\mathfrak{u}(1)^{\oplus 2}$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[2t^2 + 9t^4 + \mathcal{O}(t^5)\right]$
10	$A_4^{\mathfrak{so}(10)}([5^2],[5^2])$	${\mathfrak{su}}{}^{(2)}$ ${\mathfrak{so}}{}^{(7)}$ ${\mathfrak{su}}{}^{(2)}$ ${\mathfrak{so}}{}^{(7)}$ ${\mathfrak{su}}{}^{(2)}$	$\mathfrak{so}(4)$	$\mathfrak{u}(2)$	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[4t^2 + 2\omega t^3 + 10t^4 + \mathcal{O}(t^5)\right]$
11	$A_3^{\mathfrak{so}(10)}([4,3,2,1],[4,3,2,1])$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{su}(2)^{\oplus 2}$	$\mathfrak{su}(2)$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[3t^2 + 22t^4 + \mathcal{O}(t^5) ight]$
12	$A_5^{\mathfrak{so}(10)}([5^2],[5^2])$	$ \begin{smallmatrix} \mathfrak{su}(2) & \mathfrak{so}(7) & \mathfrak{su}(2) & \mathfrak{so}(10) & \mathfrak{su}(2) & \mathfrak{so}(7) & \mathfrak{su}(2) \\ 2 & 3 & 1 & 4 & 1 & 3 & 2 \end{smallmatrix} $	$\mathfrak{so}(2)^{\oplus 2}$	$\mathfrak{so}(2)$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[t^2 + 8t^4 + \mathcal{O}(t^5) ight]$
13	$A_6^{\mathfrak{so}(10)}([7,1^3],[7,1^3])$	$ \begin{smallmatrix} \mathfrak{su}(2) & \mathfrak{so}(7) & \mathfrak{so}(9) & \mathfrak{su}(2) & \mathfrak{so}(9) & \mathfrak{so}(7) & \mathfrak{su}(2) \\ 2 & 3 & 1 & 4 & 1 & 4 & 1 & 3 & 2 \end{smallmatrix} $	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[4t^2 + 9t^4 + \mathcal{O}(t^5)\right]$
14	$A_6^{\mathfrak{so}(10)}([7,3],[7,3])$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{u}(1)$	$\mathfrak{u}(1)$	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[t^2 + 4t^4 + \mathcal{O}(t^5)\right]$
15	$A_1^{\mathfrak{su}(3)}([1^3],[1^3])$	su(3) 2	$\mathfrak{su}(6)$	$\mathfrak{usp}(6)$	
16	$A_3^{\mathfrak{su}(3)}([2,1],[2,1])$	$\mathfrak{su}(2)$ $\mathfrak{su}(3)$ $\mathfrak{su}(2)$ 2 2 2	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2) \oplus \mathfrak{u}(1)$	
17	$A_3^{\mathfrak{su}(4)}([2,1^2],[2,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{su}(4)$ $\mathfrak{su}(3)$ 2 2 2	$\mathfrak{su}(2)^{\oplus 3} \oplus \mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	

#	Conformal Matter	Tensor Branch	f	$\mathfrak{f}_{\mathbb{Z}_2}$	_
1	$A_3^{\mathfrak{so}(6)}([3,1^3],[3,1^3])$	$\mathfrak{su}(2)$ $\mathfrak{su}(4)$ $\mathfrak{su}(2)$ 2 2 2	$\mathfrak{su}(4)$	$\mathfrak{usp}(4)$	
2	$A_1^{\mathfrak{so}(6)}([1^6],[1^6])$	$\overset{\mathfrak{su}(4)}{2}$	$\mathfrak{su}(8)$	$\mathfrak{usp}(8)$	_
3	$A_5^{\mathfrak{so}(6)}([3^2],[3^2])$	$\mathfrak{su}(2)$ $\mathfrak{su}(3)$ $\mathfrak{su}(4)$ $\mathfrak{su}(3)$ $\mathfrak{su}(2)$ 2 2 2 2 2	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	
4	$A_2^{\mathfrak{so}(8)}([3^2,1^2],[3^2,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{su}(3)$ 3 1 3	$\mathfrak{su}(3)^{\oplus 2}$?	I
5	$A_4^{\mathfrak{so}(8)}([5,1^3],[5,1^3])$	$\mathfrak{su}(2)$ $\mathfrak{so}(7)$ $\mathfrak{so}(7)$ $\mathfrak{su}(2)$ 2 3 1 3 2	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2) \oplus \mathfrak{u}(1)$	J
6	$A_4^{\mathfrak{so}(8)}([5,3],[5,3])$	$\stackrel{\mathfrak{{su}}(2)}{2} { \mathfrak{g}}_2 { \mathfrak{g}}_2 {\mathfrak{{su}}}_2^{(2)} \ 2 3 1 3 2$	$\mathfrak{su}(2)$?]
7	$A_3^{\mathfrak{so}(8)}([4,2,1^2],[4,2,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{so}(8)$ $\mathfrak{su}(3)$ 3 1 4 1 3	$\mathfrak{so}(2)^{\oplus 4}$	$\mathfrak{so}(2)^{\oplus 2}$]
8	$A_2^{\mathfrak{so}(10)}([3^3,1],[3^3,1])$	$egin{array}{cccc} \mathfrak{g}_2 & \mathfrak{su}(2) & \mathfrak{g}_2 \ 3 & 1 & 3 \end{array}$	$\mathfrak{so}(6)$	u (3)]
9	$A_4^{\mathfrak{so}(10)}([5,3,1^2],[5,3,1^2])$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{u}(1)^{\oplus 3}$	$\mathfrak{u}(1)^{\oplus 2}$]
10	$A_4^{\mathfrak{so}(10)}([5^2],[5^2])$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{so}(4)$	u (2)]
11	$A_3^{\mathfrak{so}(10)}([4,3,2,1],[4,3,2,1])$	$ \begin{smallmatrix} \mathfrak{g}_2 & \mathfrak{su}(2) & \mathfrak{so}(10) & \mathfrak{su}(2) & \mathfrak{g}_2 \ 3 & 1 & 4 & 1 & 3 \end{smallmatrix} $	$\mathfrak{su}(2)^{\oplus 2}$	$\mathfrak{su}(2)$]
12	$A_5^{\mathfrak{so}(10)}([5^2],[5^2])$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathfrak{so}(2)^{\oplus 2}$	$\mathfrak{so}(2)$	
13	$A_6^{\mathfrak{so}(10)}([7,1^3],[7,1^3])$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	_
14	$A_6^{\mathfrak{so}(10)}([7,3],[7,3])$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathfrak{u}(1)$	$\mathfrak{u}(1)$]
15	$A_1^{\mathfrak{su}(3)}([1^3],[1^3])$	su(3) 2	$\mathfrak{su}(6)$	$\mathfrak{usp}(6)$	_
16	$A_3^{\mathfrak{{su}}(3)}([2,1],[2,1])$	$\mathfrak{su}(2)$ $\mathfrak{su}(3)$ $\mathfrak{su}(2)$ 2 2 2	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)\oplus\mathfrak{u}(1)$	_
17	$A_3^{\mathfrak{su}(4)}([2,1^2],[2,1^2])$	$\mathfrak{su}(3)$ $\mathfrak{su}(4)$ $\mathfrak{su}(3)$ 2 2 2	$\mathfrak{su}(2)^{\oplus 3} \oplus \mathfrak{u}(1)^{\oplus 2}$	$\mathfrak{su}(2)^{\oplus 2} \oplus \mathfrak{u}(1)$	

	$\checkmark \widetilde{\mathcal{T}}_M = \mathcal{T}_M \wr \Gamma \checkmark$
.)	prediction!
	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[t\left((6\omega+5)\right) + t^4\left(26\omega+29\right) + \mathcal{O}\left(t^5\right)\right]$
)	$\operatorname{HS}_{\mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[4t^2 + t^4(6\omega + 11) + \mathcal{O}(t^5)\right]$
	$\operatorname{HS}_{\mathbb{Z}_{2}}(t,\omega) = \operatorname{PE}\left[t^{2}(2\omega+1) + t^{4}(6\omega+8) + \mathcal{O}\left(t^{5}\right)\right]$
	$\operatorname{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[2t^2 + t^4(15 + 6\omega) + \mathcal{O}(t^5)\right]$
	$\operatorname{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[9t^2 + 6\omega t^3 + 40t^4 + \mathcal{O}(t^5)\right]$
	$\mathrm{HS}_{\wr\mathbb{Z}_2}(t,\omega)=\mathrm{PE}\left[2t^2+9t^4+\mathcal{O}(t^5) ight]$
	$\operatorname{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \operatorname{PE}\left[4t^2 + 2\omega t^3 + 10t^4 + \mathcal{O}(t^5)\right]$
	$\mathrm{HS}_{\wr\mathbb{Z}_2}(t,\omega)=\mathrm{PE}\left[3t^2+22t^4+\mathcal{O}(t^5) ight]$
	$ ext{HS}_{\wr \mathbb{Z}_2}(t,\omega) = ext{PE}\left[t^2 + 8t^4 + \mathcal{O}(t^5) ight]$
.)	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[4t^2 + 9t^4 + \mathcal{O}(t^5) ight]$
	$\mathrm{HS}_{\wr \mathbb{Z}_2}(t,\omega) = \mathrm{PE}\left[t^2 + 4t^4 + \mathcal{O}(t^5) ight]$
)	

Conclusion

we studied how the moment maps in the Higgs branch chiral ring of Higgsed (A, A) and (D, D) conformal matter transform under \mathbb{Z}_2 GS automorphism

 \rightarrow prediction for flavor after \mathbb{Z}_2 discrete gauging

Conclusion

we studied how the moment maps in the Higgs branch chiral ring of Higgsed (A, A) and (D, D) conformal matter transform under \mathbb{Z}_2 GS automorphism

- prediction for flavor after \mathbb{Z}_2 discrete gauging

we determined the Coulomb branch Hilbert series from the wreathed monopole formula of the \mathbb{Z}_2 wreathing of the magnetic quiver

 \rightarrow prediction for flavor after \mathbb{Z}_2 discrete gauging

Conclusion

we studied how the moment maps in the Higgs branch chiral ring of Higgsed (A, A) and (D, D) conformal matter transform under \mathbb{Z}_2 GS automorphism

 \rightarrow prediction for flavor after \mathbb{Z}_2 discrete gauging

we determined the Coulomb branch Hilbert series from the wreathed monopole formula of the \mathbb{Z}_2 wreathing of the magnetic quiver

 \rightarrow prediction for flavor after \mathbb{Z}_2 discrete gauging

they agree! $\widetilde{\mathcal{T}}_M = \mathcal{T}_M \wr \Gamma$

Quiver Subtraction Algorithms and Hasse Diagrams?

- we now know a magnetic quiver for the Higgs branch of discretely-gauged conformal matter
- can we extract the foliation structure of the symplectic singularity?
 - generalize quiver subtraction/decay and fission to wreathed quivers

Quiver Subtraction Algorithms and Hasse Diagrams?

- we now know a magnetic quiver for the Higgs branch of discretely-gauged conformal matter
- can we extract the foliation structure of the symplectic singularity?
 - generalize quiver subtraction/decay and fission to wreathed quivers
 - from complex structure deformations of Calabi--Yau geometry in Ftheory, we expect certain Higgs branch RG flows to exist

 - geometry hints at such algorithms

 $(similarly to [CL, Mansi]^2)$ [CL, Mansi, Sperling, Zhong]

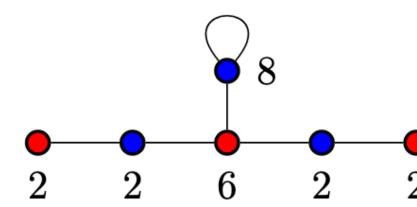
if a 6d SCFT has a \mathbb{Z}_2 zero-form symmetry and a two-form symmetry then gauging $\mathbb{Z}_2 \Rightarrow$ two-form symmetry becomes non-invertible [Tachikawa]

if a 6d SCFT has a \mathbb{Z}_2 zero-form symmetry and a two-form symmetry then gauging $\mathbb{Z}_2 \Rightarrow$ two-form symmetry becomes non-invertible [Tachikawa]

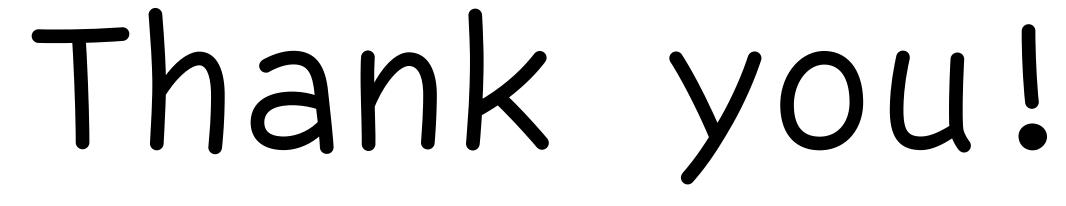
> two-form symmetry is rare in 6d; [Del Zotto, Heckman, Park, Rudelius] defect group rarely admits a polarization [Gukov, Hsin, Pei], [CL, Yu, Zhang]

- if a 6d SCFT has a \mathbb{Z}_2 zero-form symmetry and a two-form symmetry then gauging $\mathbb{Z}_2 \Rightarrow$ two-form symmetry becomes non-invertible [Tachikawa]
 - two-form symmetry is rare in 6d; [Del Zotto, Heckman, Park, Rudelius] [Gukov, Hsin, Pei], [CL, Yu, Zhang]
 - defect group rarely admits a polarization
- but eg, $A_3^{\mathfrak{su}(4)}([2^2],[2^2])$ admits \mathbb{Z}_2 zero-form and \mathbb{Z}_2 two-form symmetry

- if a 6d SCFT has a \mathbb{Z}_2 zero-form symmetry and a two-form symmetry then gauging $\mathbb{Z}_2 \Rightarrow$ two-form symmetry becomes non-invertible [Tachikawa]
 - two-form symmetry is rare in 6d; [Del Zotto, Heckman, Park, Rudelius] [Gukov, Hsin, Pei], [CL, Yu, Zhang]
 - defect group rarely admits a polarization
- but eg, $A_3^{\mathfrak{su}(4)}([2^2],[2^2])$ admits \mathbb{Z}_2 zero-form and \mathbb{Z}_2 two-form symmetry $\overset{\diamond}{\rightarrow}_{---}^{0}$ \cong
 - is non-invertible 2-form symmetry reflected in the wreathed magnetic quiver?



(similar to [Mekareeya, Sacchi]?)



Flavor algebras of a 6d SCFT

 \bullet Not obvious from explicit Weierstrass models Q [Bertolini, Merkx, Morrison]

• Torus compactification and duality with class \mathcal{S} \checkmark

How do we know these flavor symmetries persist at the origin of the tensor branch?

Orbi-instantons, Stiefel--Whitney Twists, and All That