Defects and phases of abelian GLSM

Ilka Brunner

Strings and geometry, 08. April 2025

based on 2412.05172 with D. Roggenkamp and C. Schneider

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Properties of (topological) defects in 2 dimensions

- Defect separates theories u and v
- Local operators can be constrained to live on the defect (ψ, φ)
- Defects can be merged.

- Special case 1: Theory u may be empty: Defect becomes a boundary
- Special case 2: u, v, w are the same theories, defect can be 'trivial': identity defect.

Defects, moduli spaces and perturbations

- Defect in 2 dimensional theory: 1 dimensional line, connecting 2 different theories.
- Often in physics: Families of theories
- Defects can be used to connect theories at different points in a moduli space M
- ▶ $p,q \in \mathcal{M}$, \mathcal{M} moduli space
- T(p), T(q): Theories at points p and point q.

$$T(p) \downarrow_{T(p)} T(p) \xrightarrow{path p \to q} T(q) \xrightarrow{R} T(p)$$
(2)

- Defect R connects theories at different points in moduli space.
- Depends on path γ connecting points p and q.
- Beyond moduli spaces: relevant perturbations
- Flow defects connecting a UV to an IR theory.

Features of deformed identities

- In physical theories, they are not topological.
- Fusion with other defects is highly singular.
- ► Favorable situations: SUSY and topological subsectors
- Fusion in one direction yields identity:

 $R \otimes T = id_{IR}$

...and a projector in the other direction

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $T \otimes R = P_{UV}$

Gauged linear sigma models

- UV theory: G = U(1)^k gauge theory, charged matter multiplets Y_i, superpotential, N = (2,2) supersymmetry
- Potential for scalars

$$U = \sum_{i=1}^{n} \left| \sum_{a=1}^{k} Q_{i}^{a} \sigma_{a} y_{i} \right|^{2} + \frac{e^{2}}{2} \sum_{a=1}^{k} \left(\sum_{i=1}^{n} Q_{i}^{a} |y_{i}|^{2} - r^{a} \right)^{2} + \sum_{i=1}^{n} \left| \frac{\partial W}{\partial y_{i}}(y_{1}, ..., y_{n}) \right|^{2}.$$
 (3)

- Classical vacuum manifold: U = 0/gauge-transformations
- Moduli: Complexified Fayet-Iliopoulos Parameter ¹
- Model may exhibit several phases, characterized by a (partial) breaking of the gauge symmetry.
- Geometric phases/orbifold phases

Example: Orbifold singularity

- Orbifold C²/Z_N arises as a phase that also exhibits a geometric (resolved) phase
- Matter content in a GLSM description

	X_1	X_2	<i>X</i> ₃	X_4		X_{N-1}	X_N	X_{N+1}
Q_{1X_i}	1	-2	1	0	0	0	0	0
Q_{2X_i}	0	1	-2	1	0	0	0	0
÷	÷							÷
Q_{N-2X_i}	0	0	0	0	1	-2	1	0
Q_{N-1X_i}	0	0	0	0	0	1	-2	1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

no superpotential

no running

Example: Singularity in LG framework

• Superpotential in GLSM: $W = X_0^d X_1^{d-1} X_2^{d-2} \dots X_{d-2}^2$

	X_0	X_1	X_2	<i>X</i> ₃			X_{d-3}	X_{d-2}
$U(1)_{0}$	(d - 1)	-d	0					0
$U(1)_{1}$	1	$^{-2}$	1	0				0
$U(1)_{2}$	0	1	$^{-2}$	1	0			0
$U(1)_{3}$	0	0	1	-2	1	0		0
÷	:		·	·	·	·	· .	÷
$U(1)_{d-4}$	0			0	1	$^{-2}$	1	0
$U(1)_{d-3}$	0				0	1	-2	1
								(4)

Different Landau-Ginzburg Orbifold phases, W = X^{d-i}/Z_{d-i}.
 LG model captures physics of the singularity

2-parameter model with 2 LG phases

•
$$U(1)^2$$
, 3 chiral fields, $W = X_0^d X_1^{d-1} X_2^{d-2}$.

- 3 Landau-Ginzburg phases
- Phase diagram

イロト イヨト イヨト

Task

- Defects that lift branes from phases to GLSM and vice versa?
- Action on branes: merge defect with boundary
- Functors relating brane categories of phases and GLSM

Setting and strategy

- Consider gauged linear sigma models with different phases.
- Go to a topological sector (B-type SUSY)
- Decouple gauge degrees of freedom. Remnant: Equivariance
- Explicit description of brane categories known!
 - Branes in a geometric phase: Derived category of coherent sheaves.
 - Branes in LG phase: (equivariant) category of matrix factorizations of the superpotential, finite rank
 - GLSM $\rightarrow U(1)^k$ equivariant LG model.
- Defects
 - Description of defects in phases is known
 - In particular, we know the explicit form of the 'invisible' defect
 - Want defects between phases, and between GLSMs and phases

Properties of T^i , R^i

For a fixed phase i, Rⁱ and Tⁱ_a can be used to embed the phase into the GLSM

$$\blacktriangleright R^i \otimes T^i_a = id^i$$

phaseⁱ GLSM phaseⁱ
$$R^i$$
 T^i_a

$$\blacktriangleright T^i_a \otimes R^i = P^i_a$$

GLSM phase^{*i*} GLSM
$$T_a^i$$
 R^i

 Pⁱ_a is a projector and realizes the brane category of the phase inside the GLSM.

Merge defects for different phases i, j

Construction

- Main players: Identity defects of phase and GLSM
- "Lift" on one side to GLSM

phase phase GLSM phase
Example:
$$U(1)^2$$
, $W = X_0^d X_1^{d-1} X_2^{d-2}$, LG orbifold phases
 $X_0^d V_{phase} Y_0^d \longrightarrow X_0^d X_1^{d-1} X_2^{d-2} \downarrow Y_0^d$

- A priori (too) many lifts
- Pick those that one can obtain from the GLSM

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example: Abelian GLSM with $W = X_0^d X_1^{d-1} \dots$

Mirror perspective on phases

- ▶ LG orbifold X^d / \mathbb{Z}_d is mirror to LG model with $W = X^d$.
- A-branes: described by straight lines emanating from a critical point, reality condition on W. Hori, Iqbal, Vafa
- A-brane corresponds to thimble bounded by two rays
- ▶ RG flow: relevant perturbation by lower order polynomial
- Figure: $W = X^8$

b+3b+4 b+2b+5 x_c b+1b+6 b

b + 7

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

RG flows and defects

- Under a perturbation, the critical point splits up and some (elementary) branes decouple.
- 'Wedges' collapse in picture
- The defect describing the flow contains precisely the information on which branes decouple
- In our approach, it is obtained as:

phase₁
$$GLSM$$
 phase₂ T_a^2

Merging yields a defect between different LG-orbifold models that correctly reproduces the behavior of branes under the flow.

Conclusions

- Construction of functors between brane categories in different phases of a GLSM.
- Match algebraic data specifying the functor with paths.
- Functors are given in terms of defects, e.g. T between phase and GLSM.
- Uses rigidity of SUSY and defect constructions.
- Explicit functor!
- In agreement with results obtained by other methods: analyticity of hemisphere partition function, boundary potentials Herbst-Hori-Page, Hori-Romo, Knapp-Romo-Scheidegger...
- (In particular: Reproducing the 'grade restriction rule')