Status of the OPERA experiment

On behalf of the OPERA Collaboration Andrea Russo INFN - Napoli

Hot Topics in Neutrino Oscillations Università Roma Tre Dipartimento di Fisica e Sezione INFN 5/12/2011

The OPERA Collaboration 160 physicists, 30 institutions, 11 countries PERA **Korea Belgium** Italy Jinju **IIHE-ULB Brussels** LNGS Assergi Bari Bologna Russia Croatia **LNF** Frascati **INR RAS Moscow IRB** Zagreb L'Aquila LPI RAS Moscow Naples **ITEP Moscow** Padova France SINP MSU Moscow Rome **JINR Dubna** LAPP Annecy Salerno **IPNL** Lyon **IPHC Strasbourg** Switzerland Japan Bern Germany Aichi **ETH Zurich** Hamburg Toho Kobe Nagoya Turkey Israel 众 Utsunomiya **Technion Haifa METU Ankara**

http://operaweb.lngs.infn.it/scientists/?lang=en

OPERA: first direct detection of neutrino oscillations in appearance mode in the $v_{\mu} \rightarrow v_{\tau}$ channel

following the Super- Kamiokande discovery of oscillations with atmospheric neutrinos and the confirmation obtained with accelerator beams.

OPERA main features:

CNGS neutrino beam

Year	POT (10^19)	Notes
2006	0.076	Commissioning
2007	0.082	Commissioning
2008	1.78	Physics run
2009	3.52	Physics run
2010	4.04	Physics run
2011	4.84	Physics run

Detecting τ leptons with ECC detectors

The heart of the experiment: THE ECC TARGET BRICKS 1 mm ν Pb 300µm **Emulsion Film** Stack of 57 OPERA films,

56 lead plates (10 X₀)

Emulsion film scanning

EU: ESS (European Scanning System)

- Scanning speed/system: 20cm²/h
- Customized commercial optics and mechanics
- Asynchronous DAQ software

Japan: SUTS (Super Ultra Track Selector)

- Scanning speed/system: 75cm²/h
- High speed CCD camera (3 kHz), Piezo-controlled objective lens
- FPGA Hard-coded algorithms

Similar performances

- ~ 0.3 micron spatial resolution
 - $\sim 2 \text{ mrad angular resolution}$

The target region of the OPERA detector

The OPERA detector is hybrid: *bricks* are organized in *walls* interleaved with scintillating strips

Electronic detectors:

Provide timing information on neutrino events
Preselect the neutrino interaction point with ≅cm accuracy

The OPERA detector

Target area

Target area

Muon spectrometer

Data/MC comparison The electronic detectors simulation has been compared with the available data, showing a good agreement (New J.Phys. 13 (2011) 053051).

Momentum X charge for muons

Hadronic energy deposited in TT

density x length of the muon track

v event reconstruction

Neutrino event reconstruction in tho phases: 1)Electronic detector reconstruction

2) emulsion analysis

Kinematical measurements in v event analysis

Important to achieve large signal/background ratio

The use of a succession of lead plates as ν target allows:
•e/γ identification and e/m shower calorimetry
•momentum measurement for charged particles

Momentum measurement by Multiple Coulomb Scattering

Comparison with muon spectrometer measurements

γ detection and π^0 mass reconstruction

EM shower energy measured by shower shape analysis and Multiple Coulomb Scattering method

Detection of charmed particle produced in v_{μ} CC interactions

Charmed particles production in neutrino events in OPERA as a control sample for tau decay detection efficiency

Charm candidate event (dimuon)

flight length: 1330 microns kink angle: 209 mrad IP of daughter: 262 microns daughter muon: 2.2 GeV/c decay Pt: 0.46 GeV/c

1.3 mm

Charm candidate event (4-prong)

Flight lenght: 313.1 microns ϕ : 173.2^o minimum invariant mass: 1.7 GeV

Present statistics: 2008÷2011 physics runs Run 2008 \rightarrow 2011

The first signal event

Muonless event 9234119599, taken on 22 August 2009, 19:27 (UTC)

From CS to vertex location

Large area scanning

Full reconstruction of vertices and gammas

Event reconstruction (I)

γ detection

- length available for γ detection downstream of the vertices: 6.5 X_0
- •2 gammas detected, both assumed to come from secondary vertex after impact parameter analysis **Energy (GeV)**

	Energy (GeV)	
$1^{st} \gamma$	5.6 ± 1.0 ± 1.7	
$2^{nd} \gamma$	12+04+04	

Kinematical and topological variables

The kinematical variables are computed averaging the two sets of track parameter measurements

VARIABLE	AVERAGE
kink (mrod)	44 + 0
KINK (MIAU)	41 ± 2
decay length (µm)	1335 ± 35
P daughter (GeV/c)	12 ⁺⁶ _3
Pt daughter (MeV/c)	470 +230
	-120
missing Pt (MeV/c)	570 +320 -170
φ (deg)	173 ± 2

Uncertainty on Pt due to the gamma attachment choice is smaller than 50 MeV

Topological and kinematical analysis

OPERA analysis flow (as defined in the experiment proposal) applied to this candidate event:

- kink occurring within 2 lead plates downstream of the primary vertex
- kink angle larger than 20 mrad
- daughter momentum higher than 2 GeV/c
- decay Pt higher than 600 MeV/c, 300 MeV/c if \geq 1 gamma pointing to the decay vertex
- missing Pt at primary vertex lower than 1 GeV/c
- azimuth angle between the resulting hadron momentum direction and the parent track direction larger than $\pi/2$ rad

Event interpretation and invariant mass analysis

• This event passes all cuts, with the presence of at least 1 gamma pointing to the secondary vertex

•This event is a v_{τ} candidate with the $\tau \rightarrow 1$ -prong hadron decay mode.

• The invariant mass of the two detected gammas is consistent with the π^0 mass value (see below).

• The invariant mass of the (daughter+ γ + γ) system is compatible with that of the ρ (770). The ρ appears in about 25% of the τ decays: $\tau \rightarrow \rho (\pi^- \pi^0) \nu_{\tau}$.

(γ+γ) mass	(γ+γ+daughter) mass			
120 ± 20 ± 35 MeV	640 +125 +100 MeV			

Background sources

• Prompt v_{τ}	~ 10 ⁻⁷ /CC
- Decay of charmed particles produced in $\nu_{\rm e}$ interactions	~ 10 ⁻⁶ /CC
Double charm production	~ 10 ⁻⁶ /CC

- Decay of charmed particles produced in v_{μ} interactions ~ 10⁻⁵/CC
- Hadronic reinteractions ~ 10⁻⁵/CC

Statistical significance

(from Phys.Lett.B691:138-145,2010)

- $1 v_{\tau}$ candidate in the 1 prong decay channel observed.
- Given the statistics mentioned in the paper above, the background expectation was:
- Considering all decay channels: Considering only $\tau \rightarrow 1$ prong channel:

 0.045 ± 0.020 (syst) BG events 0.018 ± 0.007 (syst) BG events

- The probability to observe at least 1 BG event is (all decay channels) 4.5%. The probability to observe at least 1 BG event is (only $t \rightarrow 1$ prong) 1.8%.
- The observation of 1 v_{τ} canditate event corresponds to a significance of 2.01 σ if we consider all dacay channels, 2.36 σ for the 1prong decay channel.

v_e event detection

ECC detector allows the identification of ν_e events
Additional physics subject: study ν_μ → ν_e oscillations
Background from ν_e prompt: ≅ 0.9% of CC events (further reduced by energy measurement)

New evaluation of OPERA sensitivity in progress

v_e event detection

21 v_{e} event candidates detected so far

Principle of the neutrino velocity measurement

Definition of neutrino velocity: ratio of precisely measured baseline and time of flight

Time of flight measurement:

tagging of neutrino production time tagging of neutrino interaction time by a far detector accurate determination of the baseline (geodesy) expected small effects: long baseline required blind analysis

Measurement of the neutrino event time distribution

Typical neutrino event time distributions in 2008 w.r.t kicker magnet trigger pulse:

not flat
 different for 1st and 2nd extraction

Proton timing by Beam Current Transformer

Proton pulse digitization:

- Acqiris DP110 1GS/s waveform digitizer (WFD)
- WFD triggered by a replica of the kicker signal
- Waveforms UTC-stamped and stored in CNGS database for offline analysis

Summary of the principle for the TOF measurement

Measure $\delta t = TOF_c - TOF_v$

Geodesy at LNGS and CERN

Dedicated measurements at LNGS (Rome Sapienza Geodesy group)

2 new GPS benchmarks on each side of the 10 km highway tunnel

GPS measurements ported underground to OPERA

CERN –LNGS measurements (different Periods) combined in the ETRF2000 European Global system, accounting for earth dynamics.

Cross-check: simultaneous CERN-LNGS measurement of GPS benchmarks (2011)

Resulting distance (BCT – OPERA reference frame) (731278.0 ± 0.2) m

Analysis method

For each neutrino event in OPERA \rightarrow proton extraction waveform

Sum up and normalise: \rightarrow PDF w(t) \rightarrow separate likelihood for each extraction

Internal events only: $(1045.1 \pm 11.3 \text{ (stat.)})$ ns

Opening the box

timing and baseline corrections

systematic uncertainties

	Blind 2006	Final analysis	Correction (ns)			
Baseline (ns)	2440079.6	2439280.9		Systematic uncertainties	ns	Error distribution
Earth rotation (ns)		2.2	700 5	-		
Correction baseline			-790.5	Baseline (20 cm)	0.67	Gaussian
CNGS DELAYS :				Decay point	0.2	Exponential (1 side)
UTC calibration (ns)	10092.2	10085		Interaction point	2.0	Flat (1 side)
Correction UTC			-7.2	UTC delay	2.0	Gaussian
WFD (ns)	0	30		I NGS fibres	1.0	Gaussian
Correction WFD			30	DAO clock transmission	1.0	Gaussian
BCT (ns)	0	-580		EBCA collibration	1.0	Gaussian
Correction BCT			-580	FPGA calibration	1.0	Gaussian
				FWD trigger delay	1.0	Gaussian
OPERA DELAYS :	0	50.6		CNGS-OPERA GPS synchronisation	1.7	Gaussian
FPGA (ns)	0	-24.5		MC simulation for TT timing	3.0	Gaussian
DAQ clock (ns)	-4245.2	-4262.9		TT time response	2.3	Gaussian
Correction TT+FPGA+DAQ	1210.2	TEOE.O	17.4	BCT calibration	5.0	Gaussian
GPS syncronization (ns)	-353	0		Total systematic uncertainty	-5.9, +8.3	
Time-link (ns)	0	-2.3				
Correction GPS			350.7			
Total			-985.6			
δt = TO (1043.4	F _c -TOF _v ± 7.8 (s	= stat.)) ns	– 985.6 ns	= (57.8 ± 7.8 (stat.) +8.3	_{-5.9} (sys.))	ns
(v-c)/c =	δt /(TO	$=_{c} - \delta t) =$	(2.37 ± 0.3	82 (stat.) ^{+0.34} -0.24(sys.)) ×	10-5	
(730085)	m used a	s neutring	baseline fr	om parent mesons averag	e decav i	point)

Short-bunch wide-spacing neutrino beam

Thank you for your attention!

Event reconstruction (II)

π^0 mass resolution (data)

1 σ mass resolution: ~ 45%

Geodesy at LNGS

Dedicated measurements at LNGS: July-Sept. 2010 (Rome Sapienza Geodesy group)

2 new GPS benchmarks on each side of the 10 km highway tunnel

GPS measurements ported underground to OPERA

Combination with CERN geodesy

CERN –LNGS measurements (different periods) combined in the ETRF2000 European Global system, accounting for earth dynamics (collaboration with CERN survey group)

Cross-check: simultaneous CERN-LNGS measurement of GPS benchmarks,

Benchmark	X (m)	Y (m)	Z (m)	
GPS1	4579518.745	1108193.650	4285874.215	
GPS2	4579537.618	1108238.881	4285843.959	
GPS3	4585824.371	1102829.275	4280651.125	
GPS4	4585839.629	1102751.612	4280651.236	

Resulting distance (BCT – OPERA reference frame) (731278.0 ± 0.2) m

Data vs PDF: before and after likelihood result

(BLIND)
$$\delta t = TOF_c - TOF_v =$$

(1043.4 ± 7.8) ns (stat)

 χ^2 / ndof :

first extraction: 1.1 second extraction: 1.0

CNGS-OPERA synchronization

Features of event tracks

.IRACK	PID	Probability						
NUMBER			LAB 1			LAB Z		
			tan Θ_x	tan Θ_v	P (GeV/c)	tan $\Theta_{\rm x}$	tan Θ_v	P (GeV/c)
1	HADRON range in Pb/emui=4.1/1.2	Prob(µ)≈10⁻₃	0.177	0.368	0,77 [0.66,0.93]	0.175	0.357	0.80 [0.65,1.05]
	CIII							
2	PROTON	range, scattering and	-0.646	-0.001	10 55 0 651	-0.653	0.001	
					[0.00,0.00]			
3	HADRON	interaction seen	0.105	0.113	1 80 2 691	0.110	0.113	1.71 [1.42,2.15]
					11.00,2.001			
(PARENT)			-0.023	0.026		-0.030	0.018	
5	HADRON: range in Pb/emut=9.5/2.8	Prob(µ)≈10-₃	0.165	0.275	1,33 [1.13,1.61]	0.149	0.259	1.23 [0.98,1.64]
	CIII							
6	HADRON:	Prob(µ)≈10⁻₃				0.334	-0.584	0.36 [0.27,0.54]
	Pb/emu=1.6/0.5 Cm							
7	From a prompt		0.430	0.419	0 34	0 445	0 4 1 9	0 58 [0 39 1 16]
	neutral particle		0.400		[0.22,0.69]	0.770	0.410	0.00 [0.00, 1.10]

~ ~ ~

Event statistics (as reported in Physics Letters B 691 (2010) 138–145 paper)

Physics Letters B 691 (2010) 138-145

Observation of a first ν_τ candidate event in the OPERA experiment in the CNGS beam

Events with search of decay topologies completed: 1088 (current number is ≅1700)

This is about 35% of the total 2008-2009 run statistics, corresponding to 1.85 x 10¹⁹ pot

With the above statistics, and for $\Delta m_{23}^2 = 2.5 \text{ x} 10^{-3} \text{ eV}^2$ and full mixing, OPERA expects: ~ 0.5 v_r events

Impact parameter measurement

DATA/MC comparison: good agreement in normalization and shape

(pion test-beam exposure)

Typical ν_μCClike and NC-like events

Kinematical cuts to be passed

Reject NC events with larger missing Pt (neutrino)

GeV/c

Reject hadron interactions

 $\nu_{\mu}N \longrightarrow \nu_{\mu}\pi^{-}X$

Charm background

Charmed particles have similar decay topologies to the τ

primary lepton not identified

• charm production in CC events represents a background source to all tau decay channels

• for the 1-prong hadronic channel 0.007±0.004 (syst) background events are expected for the analyzed statistics

• further charm BG reduction is under evaluation by implementing the systematic follow-down of low energy tracks in the bricks and the inspection of their end-range, as done for the "interesting" event. For the latter we have 98-99% muon ID efficiency.

• this background is suppressed by identifying the primary lepton with $\sim 95\%$ muon ID

Charm search: 20 candidate events selected by the kinematical cuts,

Expected: $(16.0 \pm 2.9) + \sim 2$ BG events