

Recent results from the XENONnT experiment

${\rm CE}\nu{\rm NS}$ and light WIMPs

Florian Jörg florian.joerg@physik.uzh.ch December 2, 2024 - INFN Seminar (Sapienzia)

Dark matter direct detection

Evidences for dark matter:

- Astronomical, astrophysical, cosmological
- 5x more dark matter than baryonic matter

<u>W</u>eakly interacting <u>m</u>assive <u>p</u>articles (WIMPs)

- Mass in the GeV range, interaction strength of the weak scale
- Many candidates from BSM models

Direct search approach:

- Earth (and detector) moving through DM halo
- Can induce "scattering" event with low recoil energy

Astrophysical inputs

- Local DM density $ho_{
 m 0}\sim 0.3 {
 m GeV/cm^3}$
- DM velocity distribution $f(\vec{v})$

- Assumption: DM is collisionless with isotropic velocity distribution
- Isothermal sphere (Maxwell Boltzmann distribution) December 2, 2024 - INFN Seminar (Sapienzia) | 2/22

Astrophysical inputs

- Local DM density $ho_{
 m 0}\sim 0.3 {
 m GeV/cm^3}$
- DM velocity distribution $f(\vec{v})$

- Assumption: DM is collisionless with isotropic velocity distribution
- Isothermal sphere (Maxwell Boltzmann distribution) December 2, 2024 - INFN Seminar (Sapienzia) | 2/22

Astrophysical inputs

- Local DM density $ho_{
 m 0}\sim 0.3 {
 m GeV/cm}^3$
- DM velocity distribution $f(\vec{v})$

Particle physics

• WIMP - nucleon cross section $\sigma_{\chi, \scriptscriptstyle N}$

$$\frac{d\sigma}{dE_{\rm R}} = \frac{m_{\rm N}}{2\mu^2 v^2} \left[\sigma_0^{\rm SI} F_{\rm SI}^2 + \sigma_0^{\rm SD} F_{\rm SD}^2 \right]$$

$$\sigma_0^{SI} = \frac{4\mu^2}{\pi} \left[Z f_p + (A - Z) f_n \right]^2 \\ \propto A^2$$

- *F*_{SI} & *F*_{SD} are nuclear form factors (material specific)
- At low momentum transfer: A² scaling due to coherence December 2, 2024 - INFN Seminar (Sapienzia) | 2/22

Astrophysical inputs

- Local DM density $ho_{
 m 0}\sim 0.3 {
 m GeV/cm^3}$
- DM velocity distribution $f(\vec{v})$

Particle physics

• WIMP - nucleon cross section $\sigma_{\chi,N}$

J. Phys. G43 (2016) 013001

Astrophysical inputs

- Local DM density $ho_{
 m 0}\sim 0.3 {
 m GeV/cm}^3$
- DM velocity distribution $f(\vec{v})$

Particle physics

• WIMP - nucleon cross section $\sigma_{\chi, \scriptscriptstyle N}$

Detector physics

- Target material: atomic mass m_A and total mass M_T
- Energy threshold: v_{\min} and detection efficiency $\epsilon(E_{\text{Recoil}})$

Florian Jörg | Recent results from the XENONnT experiment

XENONnT: PRL 131, 041003 (2023)

Dual-phase TPC principle

- Electron drift time \Rightarrow z-position
- Distribution of S2 signal \Rightarrow x-y-position
- S1/S2 ratio \Rightarrow signal discrimination

WIMP,n,v

The XENON-family

- \sim 200 scientists
- 29 institutions
- 12 countries

The XENON family-tree

The XENON family-tree

Bigger detector \Rightarrow less background \Rightarrow better sensitivity!

Dual-phase TPC

JCAP11(2020)031 & arXiv: 2007.08796

Dual-phase TPC

JCAP11(2020)031 & arXiv: 2007.08796

Neutron veto

Dual-phase TPC

JCAP11(2020)031 & arXiv: 2007.08796

EPJC 82 (2022) 860 arXiv: 2205.07336

LXe purification

Neutron veto

Dual-phase TPC

JCAP11(2020)031 & arXiv: 2007.08796

Neutron veto

LXe purification

EPJC 82 (2022) 860 arXiv: 2205.07336

Radon distillation

EPJC82(2022)12,1104 & arXiv:2205.11492

Dual-phase TPC

JCAP11(2020)031 & arXiv: 2007.08796

Neutron veto

LXe purification

EPJC 82 (2022) 860 arXiv: 2205.07336

Radon distillation

EPJC82(2022)12,1104 & arXiv:2205.11492

Science Data

- Using data from first two science runs of XENONnT
 - SRO: 108.0 days
 - **SR1**: 208.5 days
- Fiducial mass: \sim 4 tonnes
- Exposure:
 3.5 tonnes × years
- Performing the analysis blind

⁸B Solar neutrinos in XENONnT

Efficiency to low recoil energies

- ⁸B spectrum drops steeply below 3 keV!
- Looking only at events with: S1:
 2 or 3 PMT hits and S2: Between
 120 500 PE ≈ 4 17 electrons.
- ~20× higher CEvNS rate compared to our "standard" analysis (3-fold PMT coincidence, dashed lines)!
- But: Higher background, need to calibrate low energy repsonse

Calibration at lowest energies

- Calibration with an external YBe source
- ⁸⁸Y emits a high energy gamma: γ + ⁹Be \rightarrow n + ⁸Be
- Delivers quasi-monoenergetic low energy neutrons (\sim 152 keV)
- Similar recoil spectrum like ⁸B neutrinos

Calibration at lowest energies

 \Rightarrow Constrain of light and charge yield at lowest energies

- Still, the uncertainty is the dominant systematic in the study

Calibration at lowest energies

⇒ Constrain of light and charge yield at lowest energies

- Still, the uncertainty is the dominant systematic in the study

Accidental Coincidence (AC) Background

- Dominnant background close to threshold
- Events from incorrectly paired S1 and S2 signals
- Raw AC rate \sim 400 per day
 - "Isolates" S1: \sim 15 Hz
 - "Isolates" S2: \sim 0.15 Hz
- Events are mitigated using:
 - Boosted decision tree using S1 waveform
 - Boosted decision tree using S2 waveform
 - S2 time shadow (see next slide)

Accidental Coincidence (AC) Background

- S2 Time shadow: $S2_{pre}/\Delta t$

Large value = close to a large secondary S2

Validation of AC background

- Data driven AC model: Resampling lone S1/S2 pulses into synthetic events
- Dominant background, needs validation!
- Use a AC sideband by inversion of anti-AC cuts

SR0: 121 (122.7)

- SR1: 310 (290.0)
- Propagate uncertainties from the sideband into background prediction

Signal and background prediction

Electronic recoils (ER)

- Flat spectrum between 0 and 10 keV
- Conservative assumption of 100%

Radiogenic neutrons (RG)

• 58% uncertainty from side-band unblinding

Surface Background

- Fiducial volume chosen to make negligible
- Not included in the likelihood

B8 Signal

- 35% uncertainty due to the yield & efficiency
- Flux is kept as a free parameter

The Likelihood function

- Binned likelihood in 4D parameter space
 - -3x3x3x3=81 bins
 - Separate terms for SR0 & SR1
 - Constraints on rates and yields from ancillary measurements
- Data-driven AC background
- Other background and signal models from simulations

Discovery Potential

- Expected background: (26.4 ± 1.5) events
- Expected signal: (11.9 ± 3) events
- Our chances to detect ${}^{8}BCE\nu NS$:
 - > 2 σ : 80%
 - > 3 σ : 48%

Discovery Potential

- Expected background: (26.4 ± 1.5) events
- Expected signal:
 (11.9 \pm 3) events
- Our chances to detect ${}^{8}BCE\nu NS$:
 - > 2 σ : 80%
 - > 3 σ : 48%

Unblinded dataset

Observed events: 37

Expected events:

- $-\,$ Background: (26.4 \pm 1.4)
- Signal: (11.9 \pm 4)
- Goodness of fit (GOF) test performed to check for mismodelling (95% CL)
- S2_{pre}/Δt below GOF threshold, but no further sign for issues.
- Note: Removing this dimension from analysis would **increase** the sensitivity to 3.22σ

⁸B CE ν NS Results

- $\begin{array}{l} \ \mbox{Fix cross-section} \rightarrow \mbox{Measurement} \\ \mbox{of the solar 8B flux:} \\ (4.7^{+3.6}_{-2.3}) \times 10^6 \, \mbox{cm}^{-2} \mbox{s}^{-1} \end{array}$
- Compatible with SNO

measurement 🗸

Almost simultaneous, PandaX: Phys.Rev.Lett. 133 (2024) 19, 191001

⁸B CE ν NS Results

- $\begin{array}{l} \ \mbox{Fix cross-section} \rightarrow \mbox{Measurement} \\ \mbox{of the solar 8B flux:} \\ (4.7^{+3.6}_{-2.3}) \times 10^6 \, \mbox{cm}^{-2} \mbox{s}^{-1} \end{array}$
- Compatible with SNO measurement √

Almost simultaneous, PandaX: Phys.Rev.Lett. 133 (2024) 19, 191001

- Fix flux \rightarrow First measurement of the CE ν NS cross-section in xenon: $(1.1^{+0.8}_{-0.5}) \times 10^{-39} \, \mathrm{cm}^2$
- Compatible with standard model prediction √

 $- rac{d\sigma}{dE_R} \sim N^2$

Additional event distributions - Analysis dimensions

Component	$^8\mathrm{B} ext{-only}$	4 GeV/ c^2	6 GeV/c ²	10 GeV/ c^2
SI DM	-	3.2	0.0	0.0
${}^{8}\mathrm{B}CE\nuNS$	$11.4^{+2.0}_{-3.6}$	$10.2\pm\!\!2.7$	$11.4^{+2.7}_{-2.6}$	$11.4^{+2.7}_{-2.6}$
Total background	$37.7^{+2.5}_{-3.9}$	36.4 ^{+3.0} -3.0	$37.7^{+3.0}_{-2.9}$	$37.7^{+3.0}_{-2.9}$
Observed	37	37	37	37

LightWIMP results

- Upward fluctuation below 5 GeV/c^2
- Downward fluctuation above 5 GeV/c^2
- Apply Power constrain (PCL) to "clip" reported limit at the -1σ sensitivity
- Data & software for re-casting will be released soon!
- Exclude metallic components of "mirror DM", specifically mirror oxygen

LightWIMP results

- Upward fluctuation below 5 GeV/c^2
- Downward fluctuation above 5 GeV/c^2
- Apply Power constrain
 (PCL) to "clip" reported
 limit at the -1σ sensitivity
- Data & software for re-casting will be released soon!
- Exclude metallic components of "mirror DM", specifically mirror oxygen

Summary & Outlook

- XENONNT & PandaX-4T are first to measure CEvNS on xenon from astrophysical source
- Measurement of ⁸B CEνNS at 5σ is in reach within the lifetime of the experiment!

 XENONnT becomes the first to carry out dark matter search in the "neutrino fog"

Thank you very much for your attention!

Backup slides

Neutron background

Additional event distributions - SR0 vs. SR1

Additional event distributions - Event position

