Silicon tracker development from ALICE towards FCC-ee

Giacomo Contin Università di Trieste & INFN Sezione di Trieste

INFN Trieste in the European Strategy 20 November 2024 - Trieste

Outline

- ALICE Upgrades and FCC-ee **common challenges**
- **ITS3**: ALICE vertex detector upgrade for **LHC Run 4**
	- Ultra-thin, truly cylindrical, wafer-scale MAPS
- **ALICE 3**: future heavy-ion experiment for **LHC Run 5** and beyond
	- Compact all-silicon MAPS tracker
- Conclusions and outlook

ALICE Upgrades and FCC-ee common challenges

• The ALICE silicon upgrades planned for LHC LS3 and LS4 and the FCC-ee vertex and tracker detectors are targeting similar performance

Can the R&D for ITS3 and ALICE 3 serve as a stepping stone for FCC-ee vertex and tracker detectors?

ALICE Upgrades and FCC-ee common challenges

• The ALICE silicon upgrades planned for LHC LS3 and LS4 and the FCC-ee vertex and tracker detectors are targeting similar performance

** being revised*

ALICE silicon tracker development path

2022

Beam pipe

ALICE silicon tracker development path

ITS3 layout and material budget

• **3 layers of curved wafer-scale MAPS in TPSCo 65 nm CMOS process**

- Replacing ITS2 Inner Barrel (innermost radius reduced from 24 mm to **19 mm**)
- Each half-layer made of one wafer-size **flexible sensor**
- **In-silicon** data transmission and power distribution
- Minimal **carbon foam** support structures
- **Air cooling**

ITS2 Inner Barrel

ITS3 Engineering Model 1

ITS3 layout and material budget

• **3 layers of curved wafer-scale MAPS in TPSCo 65 nm CMOS process**

- Replacing ITS2 Inner Barrel (innermost radius reduced from 24 mm to **19 mm**)
- Each half-layer made of one wafer-size **flexible sensor**
- **In-silicon** data transmission and power distribution
- Minimal **carbon foam** support structures
- **Air cooling**

ITS3 layout and material budget

• **3 layers of curved wafer-scale MAPS in TPSCo 65 nm CMOS process**

ITS3 chip development plan

- Multi-Layer Run 1 (MLR1): **first MAPS in TPSCo 65 nm** CMOS
	- Transistor test structures
	- Analog and digital test structures
	- Achieved goal: **full process qualification**

- Engineering Run 1 (ER1): **first large area** sensors
	- Main goals: **excercize and validate stitching**
	- Chips work, main yield issue understood
	- Full characterization currently ongoing
- Engineering Run 2 (ER2): **first ITS3 sensor prototype**
	- Now: **specifications frozen**, design being finalized
	- Submission to foundry planned for early 2025
- Engineering Run 3 (ER3): **ITS3 sensor** production

we are here!

PAST

UTURE

65 nm CMOS process validation and radiation hardness

ITS3 sensor performance: spatial resolution

• ITS3 **spatial resolution requirement: 5 µm**

- Test beam measurements on APTS with different pixel pitches
- Requirement met for pitch ≤ 20 µm at standard operating settings
- Projected resolution with (20.8 µm x 22.8 µm) **ITS3 target pixel pitch meets the requirement**

• Sensor **position stability** required to be within 2 µm

ITS3 sensor performance: power consumption

- ITS3 maximum **power density: 40 mW/cm2** in the pixel matrix
- In-pixel power consumption minimization studied on DPTS by optimizing front-end settings
	- 16 mW/cm² as measured on 15 µm pixel
	- 7.6 mW/cm2 if projected to the final ITS3 sensor pixel pitch

to be measured on stitched sensor matrix

ITS3 sensor performance: stitching

- **MOnolithic Stitched Sensor (MOSS):**
	- 10 Repeated Sensor Units (RSU) stitched together
	- 25.9 cm \times 1.5 cm $-$ 18 μ m and 22.5 μ m pitch $-$ 5 FE variants
	- **Stitched backbone** allows to control and read out from left edge
	- Each unit can be powered and tested separately
	- **Main yield issue understood**

ITS3 sensor performance: stitching

- **MOnolithic Stitched Sensor (MOSS):**
	- 10 Repeated Sensor Units (RSU) stitched together
	- **25.9 cm x 1.5 cm** $-$ 18 μ m and 22.5 μ m pitch $-$ 5 FE variants
	- **Stitched backbone** allows to control and read out from left edge
	- Each unit can be powered and tested separately
	- **Main yield issue understood**

Bent MAPS: performance validation

- Efficiency preserved on bent ALPIDE (180 nm CMOS sensors)
- Charge collection properties preserved on bent APTS (65 nm CMOS)

Detection inefficiency Vs threshold for curved 180 nm CMOS sensors

- **Large-area** sensor bending
	- Technique and procedure have been mastered
	- Tests on functional bent stitched sensors in preparation

ALICE silicon tracker development path

ALICE 3

ALICE 3 Vertex Detector

3 barrel layers of ultra-thin, curved, wafer-scale MAPS

- Retractable structure inside the beam pipe secondary vacuum
- First detection layer at **5 mm from the interaction point**
- Completed by 2 x 3 end-cap disks for high |η| coverage

ALICE 3 Vertex Detector

3 barrel layers of ultra-thin, curved, wafer-scale MAPS

- Retractable structure inside the beam pipe secondary vacuum
- First detection layer at **5 mm from the interaction point**
- Completed by 2 x 3 end-cap disks for high |η| coverage

ALICE 3 Vertex Detector

3 barrel layers of ultra-thin, curved, wafer-scale MAPS

- Retractable structure inside the beam pipe secondary vacuum
- First detection layer at **5 mm from the interaction point**
- Completed by 2 x 3 end-cap disks for high |η| coverage

- Unprecedented **spatial resolution: 2.5 μm**
- Extremely low **material budget: 0.1%** X₀/layer
- **Hit rate: up to 94 MHz cm−2**
- **Main R&D challenges:**
	- Radiation hardness
		- **1016 1MeV neq cm-2 + 300 Mrad** *(LOI values)*
	- In-vacuum mechanics and cooling
	- **10 μm pixel pitch**
	- Data and power distribution

ALICE 3 Middle Layers and Outer Tracker

INFN

- Specific layouts being proposed for **Middle Layers**
	- 3-4 layers **outside the beam pipe** (r < 20 cm)
	- **Material budget reduction** from 1% to 0.1% beneficial for secondary particles and soft e-

Standard staves/module layout (LOI)

ITS3-like bent large-area sensors Blade/wheel barrels and disks

- Vertex Detector, Middle Layers and Outer Tracker need **specific sensor optimizations:**
	- Towards a common, versatile R&D path forking into two separate chips
	- Easier for other applications like FCC-ee to build on it

Conclusions and Outlook

- **ALICE Upgrades** for LS3 and LS4 targeting ambitious detector performance
- **ITS3:** ultra-thin, truly cylindrical, wafer-scale MAPS vertex detector for Run 4
- **ALICE 3**, future LHC heavy-ion collider experiment for Run 5 and beyond
- ITS3 and ALICE 3 upgrades can serve as **stepping stones towards FCC-ee**

• Constant effort to **encourage collaboration** and exchange of information…

Regular occasions for discussion in 2024

ALICE tracker experts invited to several workshop to investigate MAPS silicon technology application to FCC-ee vertex and tracker:

[RD_FCC WP-Silicon Mini-workshop](https://agenda.infn.it/event/40905/) 22–23 Apr '24 - Torino [FCC Week 2024](https://indico.cern.ch/event/1298458/) 10–14 Jun '24 - San Francisco (USA) [MAPS detectors technologies for the FCC-ee](https://indico.cern.ch/event/1417976/) vertex 1 Jul '24 - CERN [2nd FCC Italy & France Workshop](https://indico.cern.ch/event/1457081/timetable/#day-2024-11-05) 4–6 Nov 2024 - Venezia

ITS3/ALICE3 now inspiring FCC-ee vertex concepts

Ext steps:

- Expressions of Interest in preparation
- Couple DRD3 and DRD7 activities with ALICE 3 MAPS development

…

Thank you for your attention!

INFN

ALICE Upgrades' motivations and requirements

Physics Motivations:

Study of QGP in ultra-relativistic heavy-ions collisions search for rare, low momentum probes, reconstruction of displaced decay topologies:

- Heavy flavour hadrons at low p_T
- Thermal dileptons
- Precision measurements of light (hyper)nuclei and searches for charmed hypernuclei

Tracker upgrade requirements:

- Increase of effective acceptance (acceptance x readout rate)
- Improve tracking and vertexing performance low *pT* for combinatorial background suppression
	- →Excellent **spatial resolution**, minimal **inner radius** and low **material budget** are needed

ITS3 pointing resolution

ALICE 3 tracking performance

ALI-SIMUL-491785

65 nm CMOS process validation and radiation hardness

- Efficient charge collection
- *INFN Trieste*
- Radiation hardness demonstrated beyond 10 kGy + 10¹³ 1MeV n_{eg} cm⁻² *[ITS3 requirement*
	- Still efficient with 10¹⁵ 1MeV n_{eq} cm⁻² at room temperature

FCC-ee

 \sim 6 \times 10¹²1MeV neq /cm²/year

ITS3 sensor performance: intrinsic time resolution

With front-end

Sensor only

ITS3 air cooling studies

- **Tests in wind tunnel** on breadboard model
	- Dummy silicon sensor with copper serpentine heater
	- Thermal load: 25 mW cm⁻² in matrix, 1000 mW cm⁻² in end-caps
- **Temperature difference** from inlet and within the sensor **< 5°C with 8 m/s airflow** between the layers
- Mechanical assembly with carbon foam half rings keeps **vibrations within ± 0.5 μm** with 8 m/s airflow

 $d~(\mu\mathrm{m})$

ALICE 3 Middle Layers and Outer Tracker

60 m2 of silicon

- 8 barrel layers $(3.5 \text{ cm} < \text{radius} < 80 \text{ cm})$
- 2 x 9 end-cap disks
- Material budget: 1% X_0 /layer
- Position resolution: 10 μ m (\sim 50 μ m pixel pitch)
- **Low power consumption < 20 mW/cm2**
- **100 ns time resolution** to mitigate pile-up

Main R&D challenges:

- Module design for **industrialized production**
- **Low power consumption** while preserving timing performance

