

Muon collider activities for the update of the European Strategy for Particle Physics in Trieste

Massimo Casarsa

Sezione INFN di Trieste

Powering tomorrow's discoveries: INFN Trieste in the European Strategy Trieste, 20 November 2024

Why a muon collider? NFŃ

- **A muon collider is a tool to provide** leptonic collisions at multi-TeV center-of-mass energies in a relatively compact circular machine:
	- **all collision energy is available** to the hard-scattering process;
	- **Denergy and momentum of** the colliding particles are precisely known;
	- \blacktriangleright final states are in general "cleaner" w.r.t. hadronic machines.

A muon collider combines precision physics and high discovery potential.

Muon colliders are compact: cost effective and possibly more sustainable.

annual integrated luminosity per consumed electric power as a function of the center-of-mass energy

Muon colliders are powerefficient at high collision energies.

A broad physics program INFN

- Multi-TeV lepton collisions enable a broad physics program:
	- \blacktriangleright direct and indirect searches for new physics;
	- **P** precise Standard Model measurements in an unexplored energy regime;
	- ▶ Higgs boson couplings to fermions and bosons and trilinear and quartic self-couplings of the Higgs boson $(\lambda_{3}, \lambda_{4})$
		- \rightarrow determination of the Higgs potential: $V(h) = \frac{1}{2} m_h^2 h^2 + \lambda_3 v h^3 + \frac{1}{4} \lambda_4 h^4$. 1 $\frac{1}{2}m_h^2h^2 + \lambda_3v h^3 +$ 1 $\frac{1}{4}$ λ₄ h^4

The challenges of a muon collider NFŃ

"cooling", i.e. the reduction of the initial transverse phase-space volume by more than O(10⁵), represent the crucial stage of the facility.

accelerated as quick as possible to exploit the relativistic time dilation in the lab system (for a 5 TeV beam $t_u = 105$ ms in the lab).

High levels of machine background: all machine elements need to be properly shielded (a 750-GeV beam with 2×10^{12} µ/bunch is expected to radiate on average 0.5 kW/m).

Neutrino flux

Intense and highly collimated neutrino beams, emerging at the earth surface even very far from the muon collider complex, may be responsible for a severe ionization radiation hazard for the population and the environment.

Design fully driven by the muon lifetime.

Background from muon decays

- Beam-induced background (BIB) from muon decay products interacting with the machine components and the shields inside the detector (nozzles):
	- soft particles and mostly out of time w.r.t. the bunch crossing:
	- ► ∼10⁸ photons, ∼10⁷ neutrons, and ∼10⁵ electrons/positrons enter the detector at every bunch crossing in the time window [-1, 15] ns.
- **Extensively studied with MARS15 and FLUKA.**

muoncollider.web.cern.ch

International picture NFN

- The R&D studies for a muon collider are coordinated by the International Muon Collider Collaboration (IMCC), established at CERN in 2022 as a result of the recommendations of the ESPP 2020 update:
	- **IMCC** main goals:
		- ◆ assess and develop the muon collider concept for a ∼10 TeV facility;
		- \rightarrow identify potential sites to implement the collider;
		- develop an initial muon collider stage that can start operation around 2050;
		- develop an R&D roadmap towards the collider.
- Fruitful collaboration with the U.S. HEP community from the very beginning: the studies of IMCC began where the U.S. Muon Accelerator Program (2010-2014) left off.
- Outcome of Snomass 2021 in U.S. very favorable to muon collider: P5 final report recommends pursuing R&D on a machine with "partonic center of mass energy" of 10 TeV and above and encourages the U.S. HEP community to join the IMCC (ongoing integration process).

Tentative timeline for a 10 TeV muon collider

[D. Schulte, IMCC Demonstrator Workshop, FNAL, Oct. 30-Nov. 1, 2024](https://indico.fnal.gov/event/64984/)

Muon cooling demonstrator

- First step towards a muon collider is to build a demonstrator facility
	- \rightarrow to demonstrate 6D reduction of muon beam emittance by a factor of 2 with the ionization cooling
	- \blacktriangleright to test the cooling cell technology to be employed in the muon collider in an operational environment:
		- \rightarrow HTS magnets at 20 K, cooled by LH₂;
		- warm, multi-cell, high-gradient radio frequencies;
		- \blacktriangleright LH₂ and LiH absorbers;
	- \triangleright to study and test the production target:
		- high-power materials;
		- horn magnets;
	- to develop new beam monitoring instrumentation.
- **O** Depending on the available resourced the muon beam could be accelerated for muon and neutrino physics.

ionization cooling principle

Muons have large transverse momenta at production.

Crossing an absorber, muons loose energy in longitudinal and transverse directions.

Muon acceleration in the longitudinal direction.

Possible sites for a demonstrator at CERN INFN

[R. Losito, IMCC Demonstrator Workshop, FNAL, Oct. 30-Nov. 1, 2024](https://indico.fnal.gov/event/64984/)

Muon collider activities in Italy

- After MAP's shutdown in 2014, international interest in a muon collider has been revived thanks to the efforts of INFN:
	- proposal by P. Raimondi et al. of an alternative method \blacktriangleright for producing muons (LEMMA, Low EMittance Muon Accelerator) based on the process $e^+e^- \rightarrow \mu^+ \mu^-$.
- In 2021, a CSN1 project dedicated to muon collider studies RD_MUCOL started, which currently counts 113 collaborators (24.6 FTE), engaged in:
	- R&D of magnets and radio frequencies for the accelerator;
	- detector R&D;
	- **Music Collider activities** in the Italya collider activities in Italya **Physics and detector studies.**
- Proton Driver Acceleration Collider Ring Front End Cooling ggs Facton Rotator to SC Linac Combiner Buncher umulato -10 TeV Accelerators: Linacs, RLA or FFAG, RCS Positron Positron Linac **Low EMmittance Muon** Acceleration Collider Ring **Accelerator (LEMMA):** 10^{11} µ pairs/sec from E_{COM}: e⁺e⁻interactions. The small production emittance allows lower 10s of TeV Positron Linac overall charge in the collider rings - hence, lower backgrounds in a 100 KW
target collider detector and a higher $\overrightarrow{u^*}$ potential CoM energy due to Accelerators: Linacs, RLA or FFAG, RCS neutrino radiation.

- From 2023, participation of several Italian groups in the European project MuCol (HORIZON-INFRA-2022-DEV-01), which is mainly dedicated to machine studies and R&D, but also includes a work package dedicated to the detector:
	- ▶ Trieste is responsible for one of the Tasks of the Work Package "Detector and Physics performance": evaluation of the detector performance at different collision energies with major physics processes.
- Trieste has been involved in the R&D studies for the Muon Collider from the very beginning.
- LEMMA testbeams in 2018:
	- Study of muon pair production from $e^+e^- \rightarrow \mu^+\mu^-$:
		- N. Amapane et al., "Study of muon pair production from positron annihilation at threshold energy", 2020 JINST 15 P01036
- Inputs to the 2020 ESPP update:
	- detector and physics (H \rightarrow b₀) studies at a 1.5 TeV muon collider with full simulation including the beam-induced background
		- \rightarrow this was the first demonstration that it is possible to efficiently reconstruct events and obtain competitive physics measurements under the severe background conditions of a muon collider.
			- N. Bartosik at al., "Detector and Physics Performance at a Muon Collider", 2020 JINST 15 P05001

Muon collider activities in Trieste (2021-2023)

Inputs to the U.S. Snowmass 2021:

- full-simulation studies of the sensitivity of a 3 TeV muon collider on the production cross sections of the Higgs boson in the $b\overline{b}$, WW, ZZ, $\mu\mu$, $\gamma\gamma$ channels and of two Higgs bosons (trilinear self-coupling):
	- P. Andreetto et al., "Aspects of Higgs Physics at a \sqrt{s} =3 TeV Muon Collider with detailed detector simulation", submitted to EPJC (arXiv:2405.19314)

■ search for a dark photon or ALP with a monophoton signature at 3 and 10 TeV:

M.C., M. Fabbrichesi and E. Gabrielli, "Monochromatic single photon events at the muon collider", Phys. Rev. D 105, 075008 (2022)

95% CL limits on DP effective coupling to muons

 $0.81 \leq K_{\lambda 3} \leq 1.44$ at 68% C.L.

Current muon collider activities in Trieste

- Trieste is contributing to detector studies with full simulation in collaboration with the other Italian groups:
	- \triangleright concept design of a new detector for 10 TeV $\mu\mu$ collisions: MUSIC (MUon System for Interesting Collisions);
	- \blacktriangleright revision and tuning of the reconstruction algorithms of main physics objects in the presence of machine backgrounds;
	- **P** performance studies and characterization of the new detector.

MUSIC detector

Plans for the next ESPP update

- \bullet Activities for the next ESPP update are mainly focused on a muon collider at \sqrt{s} = 10 TeV.
- Completion of the MUSIC detector performance assessment
	- \rightarrow results will be submitted to the ESSP update as a common IMCC report.
- Higgs physics studies with full simulation including machine backgrounds (both beam-induced background and incoherent e⁺e⁻ pair production):
	- \blacktriangleright H \rightarrow bb;
	- \blacktriangleright H \rightarrow WW (Giulia Liberalato Master's Degree thesis);
	- $H \rightarrow \gamma \gamma$;
	- \triangleright HH \rightarrow bbbb \rightarrow sensitivity on the Higgs boson trilinear self-coupling.

Bkg from incoherent e⁺e⁺ pair production

- Background from incoherent e⁺e⁻ pairs produced at bunch crossing:
	- relatively high-energy e^{\pm} , which enter the detector at the interaction point in time with the bunch crossing;
	- photons (\sim 10⁶), neutrons (\sim 10⁵), and electrons/positrons (\sim 10⁵);
	- affects mainly the vertex detector and the inner tracker layers.
- The solenoidal B field helps in confining most of the e^\pm in the innermost region close to the beampipe.

Radiation environment at $\sqrt{s} = 10 \text{ TeV}$ **INFN**

Current CERN demonstrator layout INFN

Higgs boson couplings at future colliders INFN

[S. Dawson et al., Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics, arXiv:2209.07510](https://arxiv.org/abs/2209.07510)

Higgs Coupling HL-LHC		ILC250	ILC500	ILC1000	Γ CC-ee	CEPC240	CEPC360	CLIC380	CLIC3000	$\mu(10 \text{TeV})$	μ 125	$\operatorname{FCC-hh}$
$(\%)$												$+$ HL-LHC $ +$ FCCee/FCCeh
hZZ	$1.5\,$.22	.17	$.16\,$.17	.074	.072	.34	.22	.33	$1.3\,$	$.12\,$
hWW	1.7	.98	.20	$.13\,$.41	.73	.41	.62		\cdot 1	1.3	.14
$hb\overline{b}$	3.7	$1.06\,$.50	.41	.64	.73	.44	.98	.36	.23	$1.6\,$.43
$h\tau^+\tau^-$	3.4	1.03	.58	.48	.66	.77	.49	1.26	.74	.55	1.4	.44
hgg.	2.5	1.32	.82	.59	.89	.86	.61	1.36	.78	.44	1.7	.49
$hc\overline{c}$	$\overline{}$	1.95	1.22	.87	1.3	$1.3\,$	1.1	3.95	1.37	1.8	12	.95
$h\gamma\gamma$	$1.8\,$	1.36	1.22	1.07	$1.3\,$	1.68	$1.5\,$	1.37	1.13	.71	$1.6\,$.29
$h\gamma Z$	9.8	10.2	10.2	10.2	10	4.28	4.17	10.26	5.67	5.5	9.8	.69
$h\mu^+\mu^-$	4.3	4.14	3.9	3.53	3.9	3.3	$3.2\,$	4.36	3.47	2.5	.6	.41
$ht\overline{t}$	3.4	$3.12\,$	2.82	1.4	$3.1\,$	3.1	3.1	3.14	$2.01\,$	$3.2\,$	3.4	$1.0\,$
Γ_{tot}	5.3	1.8	.63	.45	1.1	1.65	1.1	1.44	.41	.5	2.7	

Higgs self-coupling λ**³ at future colliders** INFN

Example of Z' **searches**

- New Z' bosons can be probed directly up to $M_{Z} \sim \sqrt{s}$, but indirect searches extend much beyond:
	- example of a phenomenological study exploring the reach of a muon collide for additional neutral gauge bosons that couple to the standard model: [K. Korshynska et al., arXiv:2402.18460](https://arxiv.org/abs/2402.18460).

- \bullet Intense and highly collimated \vee fluxes, emerging on the earth surface even very faraway from the muon collider complex, may activate in the long run the materials they cross:
	- \triangleright arc sections \rightarrow radiation disk;
	- \triangleright straight sections \rightarrow radiation hot spots.

Neutrino flux mitigation

- The final goal is to keep the radiation field at a negligible level (i.e. below 10 mSv/year), where the neutrino beams reach the Earth surface.
- MAP studies demonstrated that up to 3 TeV depth (~300 m at 3 TeV) and beam movements with optics adjustments might be sufficient.
- For a 10-TeV machine additional mitigation measures are necessary:
	- \blacktriangleright beam wobbling at a frequency of a few months by means of a mechanical mover system of the accelerator components to spread the neutrino flux;
	- **a** well-thought site selection: a team at CERN carried out a geological, environmental, land and radiological analysis of the area to assess the impact of a muon collider in the LHC tunnel.

International Muon Collider Collaboration

INFN