







# Muon collider activities for the update of the European Strategy for Particle Physics in Trieste

Massimo Casarsa

Sezione INFN di Trieste



Powering tomorrow's discoveries: INFN Trieste in the European Strategy Trieste, 20 November 2024

# **INFN** Why a muon collider?

- A muon collider is a tool to provide leptonic collisions at multi-TeV center-of-mass energies in a relatively compact circular machine:
  - all collision energy is available to the hard-scattering process;
  - energy and momentum of the colliding particles are precisely known;
  - final states are in general "cleaner" w.r.t. hadronic machines.

A muon collider combines precision physics and high discovery potential.





Muon colliders are compact: cost effective and possibly more sustainable. annual integrated luminosity per consumed electric power as a function of the center-of-mass energy



Muon colliders are powerefficient at high collision energies.

# **INFN** A broad physics program

- Multi-TeV lepton collisions enable a broad physics program:
  - direct and indirect searches for new physics;
  - precise Standard Model measurements in an unexplored energy regime;
  - Higgs boson couplings to fermions and bosons and trilinear and quartic self-couplings of the Higgs boson ( $\lambda_3$ ,  $\lambda_4$ )
    - → determination of the Higgs potential:  $V(h) = \frac{1}{2}m_h^2h^2 + \lambda_3vh^3 + \frac{1}{4}\lambda_4h^4$ .



3

# **INFN** The challenges of a muon collider



The muon beam production and "cooling", i.e. the reduction of the initial transverse phase-space volume by more than  $O(10^5)$ , represent the crucial stage of the facility.

Muon beams must be prepared and accelerated as quick as possible to exploit the relativistic time dilation in the lab system (for a 5 TeV beam  $t_{\mu}$  = 105 ms in the lab). High levels of machine background: all machine elements need to be properly shielded (a 750-GeV beam with  $2 \times 10^{12}$  µ/bunch is expected to radiate on average 0.5 kW/m).

#### Neutrino flux

Intense and highly collimated neutrino beams, emerging at the earth surface even very far from the muon collider complex, may be responsible for a severe ionization radiation hazard for the population and the environment.

### Design fully driven by the muon lifetime.

# **NFN** Background from muon decays







- Beam-induced background (BIB) from muon decay products interacting with the machine components and the shields inside the detector (nozzles):
  - **soft particles** and mostly out of time w.r.t. the bunch crossing:
  - ► ~10<sup>8</sup> photons, ~10<sup>7</sup> neutrons, and ~10<sup>5</sup> electrons/positrons enter the detector at every bunch crossing in the time window [-1, 15] ns.
- Extensively studied with MARS15 and FLUKA.

#### muoncollider.web.cern.ch

Collider Collaboration (IMCC) Website

Muon Collider on YouTube



develop an initial muon collider stage that can start

P5 final report recommends pursuing R&D on a machine with "partonic center of mass energy" of 10 TeV and above and

encourages the U.S. HEP community to join the IMCC (ongoing

- identify potential sites to implement the collider;
- $\sim$  10 TeV facility:
- assess and develop the muon collider concept for a
- ▶ IMCC main goals:

**International picture** 

(IMCC), established at CERN in 2022 as a result of the recommendations of the ESPP 2020 update:

The R&D studies for a muon collider are coordinated by the International Muon Collider Collaboration

CERN Accelerating science





Sign in Director

NFN

integration process).

### **Tentative timeline for a 10 TeV muon collider**



D. Schulte, IMCC Demonstrator Workshop, FNAL, Oct. 30-Nov. 1, 2024

7

# **INFN** Muon cooling demonstrator

- First step towards a muon collider is to build a demonstrator facility
  - to demonstrate 6D reduction of muon beam emittance by a factor of 2 with the ionization cooling
  - to test the cooling cell technology to be employed in the muon collider in an operational environment:
    - HTS magnets at 20 K, cooled by LH<sub>2</sub>;
    - warm, multi-cell, high-gradient radio frequencies;
    - LH<sub>2</sub> and LiH absorbers;
  - to study and test the production target:
    - high-power materials;
    - horn magnets;
  - to develop new beam monitoring instrumentation.
- Depending on the available resourced the muon beam could be accelerated for muon and neutrino physics.

#### ionization cooling principle



Muons have large transverse momenta at production. Crossing an absorber, muons loose energy in longitudinal and transverse directions. Muon acceleration in the longitudinal direction.

# **INFN** Possible sites for a demonstrator at CERN



R. Losito, IMCC Demonstrator Workshop, FNAL, Oct. 30-Nov. 1, 2024

9

# **NFN** Muon collider activities in Italy

- After MAP's shutdown in 2014, international interest in a muon collider has been revived thanks to the efforts of INFN:
  - ▶ proposal by P. Raimondi et al. of an alternative method for producing muons (LEMMA, Low EMittance Muon Accelerator) based on the process  $e^+e^- \rightarrow \mu^+\mu^-$ .
- In 2021, a CSN1 project dedicated to muon collider studies RD\_MUCOL started, which currently counts 113 collaborators (24.6 FTE), engaged in:
  - R&D of magnets and radio frequencies for the accelerator;
  - detector R&D;
  - physics and detector studies.

Proton Driver Front End Cooling Acceleration Collider Ring iggs Factor umulator Buncher SC Linac Combine ~10 TeV G Accelerators: Linacs, RLA or FFAG, RCS Low EMmittance Muon Positron Positron Linac Acceleration Collider Ring Accelerator (LEMMA): 10<sup>11</sup> u pairs/sec from e\*e<sup>-</sup> interactions. The small production emittance allows lower 10s of TeV Positron Linac overall charge in the collider rings hence, lower backgrounds in a 100 KW target collider detector and a higher Accelerators: potential CoM energy due to Linacs, RLA or FFAG, RCS neutrino radiation

- From 2023, participation of several Italian groups in the European project MuCol (HORIZON-INFRA-2022-DEV-01), which is mainly dedicated to machine studies and R&D, but also includes a work package dedicated to the detector:
  - Trieste is responsible for one of the Tasks of the Work Package "Detector and Physics performance": evaluation of the detector performance at different collision energies with major physics processes.

### N. Amapane et al., "Study of muon pair production from positron annihilation at threshold energy", 2020 JINST 15 P01036

#### Inputs to the 2020 ESPP update:

LEMMA testbeams in 2018:

► detector and physics  $(H \rightarrow b\overline{b})$  studies at a 1.5 TeV muon collider with full simulation including the beam-induced background

Trieste has been involved in the R&D studies for the Muon Collider from

**b** study of muon pair production from  $e^+e^- \rightarrow \mu^+\mu^-$ :

- this was the first demonstration that it is possible to efficiently reconstruct events and obtain competitive physics measurements under the severe background conditions of a muon collider.
  - N. Bartosik at al., "Detector and Physics Performance at a Muon Collider", 2020 JINST 15 P05001

 $\mathcal{L}_{int}$  [ab<sup>-1</sup>]



 $\sqrt{s}$  [TeV]





projections



the very beginning.

### N Muon collider activities in Trieste (2018-2020)

## Muon collider activities in Trieste (2021-2023)

### Inputs to the U.S. Snowmass 2021:

- full-simulation studies of the sensitivity of a 3 TeV muon collider on the production cross sections of the Higgs boson in the bb, WW, ZZ,  $\mu\mu$ ,  $\gamma\gamma$ channels and of two Higgs bosons (trilinear self-coupling):
  - P. Andreetto et al., "Aspects of Higgs Physics at a  $\sqrt{s}=3$  TeV Muon Collider with detailed detector simulation", submitted to EPJC (arXiv:2405.19314)
- **search for a dark photon or ALP with a monophoton signature at 3 and 10 TeV:** 
  - M.C., M. Fabbrichesi and E. Gabrielli, "Monochromatic single photon events at the muon collider", Phys. Rev. D 105, 075008 (2022)



|   | $\sqrt{s} = 3$ TeV, 1 ab <sup>-1</sup> | channel                                                                                                      | $\sigma_{\rm eff}$ [fb] | $\epsilon_{ m sel}$ [%] | Nevt  | $\Delta \sigma_H / \sigma_H$ [%] |                               |
|---|----------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------|----------------------------------|-------------------------------|
| _ | $H \rightarrow b \bar{b}$              | S: $b\bar{b}$                                                                                                |                         | 19.3                    | 59500 | 0.75                             |                               |
|   |                                        | B: $\mu^+\mu^- \rightarrow q_h \bar{q}_h X \ (q_h = b, c; \ X = \nu_\mu \bar{\nu}_\mu, \mu^+\mu^-)$          | 584                     | 11.2                    | 65400 | 0.75                             |                               |
|   | $H \to WW^*$                           | S: $q\bar{q}'\mu\nu_{\mu}$                                                                                   | 17.3                    | 14.1                    | 2430  | 2.9                              |                               |
|   |                                        | B: $\mu^+\mu^- \to q\bar{q}'\mu\nu_\mu$                                                                      | 5020                    | 0.05                    | 2600  | 2.9                              |                               |
|   |                                        | S: $\gamma\gamma$                                                                                            | 0.91                    | 43.9                    | 396   |                                  |                               |
|   | $H \rightarrow \gamma \gamma$          | B: $\mu^+\mu^- \to \gamma\gamma\nu_\mu\bar{\nu}_\mu$                                                         | 82.0                    | 1.1                     | 442   | 7.6                              |                               |
|   | $\Pi \rightarrow \gamma \gamma$        | $\mu^+\mu^- \to \ell^+\ell^-\gamma \ (\ell=e,\mu)$                                                           | 159                     | 0.06                    | 31    | 7.0                              |                               |
|   |                                        | $\mu^+\mu^- \to \ell^+\ell^-\gamma\gamma~(\ell=e,\mu)$                                                       | 4.41                    | 0.3                     | 11    |                                  |                               |
|   | $H \rightarrow ZZ^*$                   | S: $q\bar{q}\mu^+\mu^-$                                                                                      | 0.35                    | 15.9                    | 55    | 17                               |                               |
|   | $\Pi \rightarrow ZZ$                   | B: $\mu^+\mu^- \to q\bar{q}\mu^+\mu^-$                                                                       | 5.67                    | 0.69                    | 39    | 17                               |                               |
|   |                                        | S: $\mu^{+}\mu^{-}$                                                                                          | 0.12                    | 21.6                    | 26    |                                  |                               |
|   | $H \rightarrow \mu^+ \mu^-$            | B: $\mu^+\mu^- \to \mu^+\mu^-\nu_\mu\bar{\nu}_\mu$                                                           | 11.1                    | 5.74                    | 637   | 38                               |                               |
|   |                                        | $\mu^+\mu^- \to \mu^+\mu^-\mu^+\mu^-$                                                                        | 297.4                   | 0.16                    | 476   |                                  |                               |
|   |                                        | S: $b\bar{b}b\bar{b}$                                                                                        | 0.28                    | 27.5                    | 77    |                                  | 0.81 < κ <sub>λ3</sub> < 1.44 |
| _ | $HH \rightarrow b \bar{b} b \bar{b}$   | B: $\mu^+\mu^- \rightarrow q_h\bar{q}_hq_h\bar{q}_hX \ (q_h = b, c; \ X = \nu_\mu\bar{\nu}_\mu, \mu^+\mu^-)$ | 4.1                     | 17.7                    | 724   | 33                               | at 68% C.L.                   |
|   |                                        | $\mu^+\mu^- \to H(b\bar{b})q_h\bar{q}_hX \ (q_h=b,c; \ X=\nu_\mu\bar{\nu}_\mu,\mu^+\mu^-)$                   | 2.8                     | 24.7                    | 698   |                                  | at 00 % C.L.                  |

#### 95% CL limits on DP effective coupling to muons



### **Current muon collider activities in Trieste**

- Trieste is contributing to detector studies with full simulation in collaboration with the other Italian groups:
  - concept design of a new detector for 10 TeV μμ collisions: MUSIC (MUon System for Interesting Collisions);
  - revision and tuning of the reconstruction algorithms of main physics objects in the presence of machine backgrounds;
  - performance studies and characterization of the new detector.





### **MUSIC** detector



# **INFN** Plans for the next ESPP update

- Activities for the next ESPP update are mainly focused on a muon collider at  $\sqrt{s} = 10$  TeV.
- Completion of the MUSIC detector performance assessment
  - → results will be submitted to the ESSP update as a common IMCC report.
- Higgs physics studies with full simulation including machine backgrounds (both beam-induced background and incoherent e<sup>+</sup>e<sup>-</sup> pair production):
  - ►  $H \rightarrow b\overline{b};$
  - ►  $H \rightarrow WW$  (Giulia Liberalato Master's Degree thesis);
  - ►  $H \rightarrow \gamma \gamma;$
  - ► HH  $\rightarrow$  bbbb  $\rightarrow$  sensitivity on the Higgs boson trilinear self-coupling.



# **IFN** Bkg from incoherent e<sup>+</sup>e<sup>-</sup> pair production



- Background from incoherent e⁺e⁻ pairs produced at bunch crossing:
  - relatively high-energy e<sup>±</sup>, which enter the detector at the interaction point in time with the bunch crossing;
  - **b** photons ( $\sim 10^6$ ), neutrons ( $\sim 10^5$ ), and electrons/positrons ( $\sim 10^5$ );
  - affects mainly the vertex detector and the inner tracker layers.
- The solenoidal B field helps in confining most of the e<sup>±</sup> in the innermost region close to the beampipe.

## **INFN** Radiation environment at $\sqrt{s} = 10$ TeV



| Assumptions:                                  |          |                                  | Maximum | Dose (Mrad) | Maximum Flue      | ence (1 MeV-neq/cm $^2$ ) |
|-----------------------------------------------|----------|----------------------------------|---------|-------------|-------------------|---------------------------|
| <ul> <li>collision energy: 10 TeV;</li> </ul> |          |                                  | R=22 mm | R=1500  mm  | R=22 mm           | R=1500 mm                 |
| <ul> <li>collider circumference:</li> </ul>   |          | Muon Collider $(3 \mathrm{TeV})$ | 10      | 0.1         | $10^{15}$         | $10^{14}$                 |
| beam injection frequence                      | y: 5 Hz; | HL-LHC                           | 100     | 0.1         | $10^{15}$         | $10^{13}$                 |
| <ul> <li>days of operation per ye</li> </ul>  | ar: 140. | Muon Collider $(10\mathrm{TeV})$ | 20      | 0.2         | $3 	imes 10^{14}$ | $10^{14}$                 |

# **INFN** Current CERN demonstrator layout



# **INFN** Higgs boson couplings at future colliders

S. Dawson et al., Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics, arXiv:2209.07510

| Higgs Coupling   | HL-LHC | ILC250   | ILC500  | ILC1000  | FCC-ee   | CEPC240  | CEPC360 | CLIC380  | CLIC3000 | $\mu(10 \text{TeV})$ | $\mu 125$ | FCC-hh       |
|------------------|--------|----------|---------|----------|----------|----------|---------|----------|----------|----------------------|-----------|--------------|
| (%)              |        | + HL-LHC | +HL-LHC | + HL-LHC | + HL-LHC | + HL-LHC | +HL-LHC | + HL-LHC | +HL-LHC  | + HL-LHC             | +HL-LHC   | +FCCee/FCCeh |
| hZZ              | 1.5    | .22      | .17     | .16      | .17      | .074     | .072    | .34      | .22      | .33                  | 1.3       | .12          |
| hWW              | 1.7    | .98      | .20     | .13      | .41      | .73      | .41     | .62      | 1        | .1                   | 1.3       | .14          |
| $hb\overline{b}$ | 3.7    | 1.06     | .50     | .41      | .64      | .73      | .44     | .98      | .36      | .23                  | 1.6       | .43          |
| $h\tau^+\tau^-$  | 3.4    | 1.03     | .58     | .48      | .66      | .77      | .49     | 1.26     | .74      | .55                  | 1.4       | .44          |
| hgg.             | 2.5    | 1.32     | .82     | .59      | .89      | .86      | .61     | 1.36     | .78      | .44                  | 1.7       | .49          |
| $hc\overline{c}$ | -      | 1.95     | 1.22    | .87      | 1.3      | 1.3      | 1.1     | 3.95     | 1.37     | 1.8                  | 12        | .95          |
| $h\gamma\gamma$  | 1.8    | 1.36     | 1.22    | 1.07     | 1.3      | 1.68     | 1.5     | 1.37     | 1.13     | .71                  | 1.6       | .29          |
| $h\gamma Z$      | 9.8    | 10.2     | 10.2    | 10.2     | 10       | 4.28     | 4.17    | 10.26    | 5.67     | 5.5                  | 9.8       | .69          |
| $h\mu^+\mu^-$    | 4.3    | 4.14     | 3.9     | 3.53     | 3.9      | 3.3      | 3.2     | 4.36     | 3.47     | 2.5                  | .6        | .41          |
| $ht\overline{t}$ | 3.4    | 3.12     | 2.82    | 1.4      | 3.1      | 3.1      | 3.1     | 3.14     | 2.01     | 3.2                  | 3.4       | 1.0          |
| $\Gamma_{tot}$   | 5.3    | 1.8      | .63     | .45      | 1.1      | 1.65     | 1.1     | 1.44     | .41      | .5                   | 2.7       |              |

# **INFN** Higgs self-coupling $\lambda_3$ at future colliders

| collider                      | Indirect- $h$ | hh       | combined   |
|-------------------------------|---------------|----------|------------|
| HL-LHC [78]                   | 100-200%      | 50%      | 50%        |
| $ILC_{250}/C^3-250$ [51, 52]  | 49%           |          | 49%        |
| $ILC_{500}/C^3$ -550 [51, 52] | 38%           | 20%      | 20%        |
| $CLIC_{380}$ [54]             | 50%           | -        | 50%        |
| $CLIC_{1500}$ [54]            | 49%           | 36%      | 29%        |
| $CLIC_{3000}$ [54]            | 49%           | 9%       | 9%         |
| FCC-ee [55]                   | 33%           |          | 33%        |
| FCC-ee $(4 \text{ IPs})$ [55] | 24%           | -        | 24%        |
| FCC-hh [79]                   | -             | 3.4-7.8% | 3.4 - 7.8% |
| $\mu(3 \text{ TeV})$ [64]     | -             | 15-30%   | 15 - 30%   |
| $\mu(10 \text{ TeV}) [64]$    | -             | 4%       | 4%         |

S. Dawson et al., Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics, arXiv:2209.07510

# **NFN** Example of Z' searches

- New Z' bosons can be probed directly up to  $M_{Z'} \sim \sqrt{s}$ , but indirect searches extend much beyond:
  - example of a phenomenological study exploring the reach of a muon collide for additional neutral gauge bosons that couple to the standard model: K. Korshynska et al., arXiv:2402.18460.







- Intense and highly collimated v fluxes, emerging on the earth surface even very faraway from the muon collider complex, may activate in the long run the materials they cross:
  - ▶ arc sections  $\rightarrow$  radiation disk;
  - **•** straight sections  $\rightarrow$  radiation hot spots.



# **NFN** Neutrino flux mitigation





- The final goal is to keep the radiation field at a negligible level (i.e. below 10 mSv/year), where the neutrino beams reach the Earth surface.
- MAP studies demonstrated that up to 3 TeV depth (~300 m at 3 TeV) and beam movements with optics adjustments might be sufficient.
- For a 10-TeV machine additional mitigation measures are necessary:
  - beam wobbling at a frequency of a few months by means of a mechanical mover system of the accelerator components to spread the neutrino flux;
  - a well-thought site selection: a team at CERN carried out a geological, environmental, land and radiological analysis of the area to assess the impact of a muon collider in the LHC tunnel.

### **International Muon Collider Collaboration**

| IEIO | CERN                              | IT                                     | INFN                                   | SE                | ESS                           | US       | Iowa State University     |
|------|-----------------------------------|----------------------------------------|----------------------------------------|-------------------|-------------------------------|----------|---------------------------|
| FR   | CEA-IRFU                          |                                        | INFN, Univ., Polit. Torino             |                   | University of Uppsala         |          | University of Iowa        |
|      | CNRS-LNCMI                        |                                        | INFN, Univ. Milano Biocca              | NL                | University of Twente          |          | Wisconsin-Madison         |
|      | Mines St-Etienne                  |                                        | INFN, Univ. Padova                     | FI                | Tampere University            |          | University of Pittsburgh  |
| DE   | DESY                              |                                        | INFN, Univ. Pavia                      | LAT               | Riga Technical University     |          | Old Dominion              |
|      | Technical University of Darmstadt |                                        | INFN, Univ. Bologna                    | СН                | PSI                           |          | Chicago University        |
|      | University of Rostock             |                                        | INFN Trieste                           |                   | University of Geneva          |          | Florida State University  |
|      | КП                                |                                        | INFN, Univ. Bari                       |                   | EPFL                          |          | RICE University           |
| UK   | RAL                               |                                        | INFN, Univ. Roma 1                     | BE                | Univ. Louvain                 |          | Tennessee University      |
|      | UK Research and Innovation        |                                        | ENEA                                   | AU                | HEPHY                         |          | MIT Plasma science center |
|      | University of Lancaster           |                                        | INFN Frascati                          |                   | TU Wien                       |          | Pittsburgh PAC            |
|      | University of Southampton         |                                        | INFN, Univ. Ferrara                    | ES                | I3M                           |          | Yale                      |
|      | University of Strathclyde         |                                        | INFN, Univ. Roma 3                     |                   | CIEMAT                        |          | Princeton                 |
|      | University of Sussex              |                                        | INFN Legnaro                           |                   | ICMAB                         |          | Stony Brook               |
|      | Imperial College London           |                                        | INFN, Univ. Milano Bicocca             | China             | Sun Yat-sen University        |          | Stanford/SLAC             |
|      | Royal Holloway                    |                                        | INFN Genova                            |                   | IHEP                          |          |                           |
|      | University of Huddersfield        |                                        | INFN Laboratori del Sud                | Peking University |                               | DoE labs | FNAL                      |
|      | University of Oxford              |                                        | INFN Napoli                            |                   | Inst. Of Mod. Physics, CAS    |          | LBNL                      |
|      | University of Warwick             | Mal                                    | Univ. of Malta                         | ко                | Kyungpook National University |          | JLAB                      |
|      | University of Durham              | EST                                    | Tartu University                       |                   | Yonsei University             |          | BNL                       |
|      | University of Birmingham          | РТ                                     | LIP                                    |                   | Seoul National University     | Brazil   | CNPEM                     |
|      | University of Cambridge           |                                        | Signed MoC, requested MoC, contributor |                   | СНЕР                          |          |                           |
|      |                                   | Signed moe, requested moe, contributor |                                        |                   |                               |          |                           |

INFN