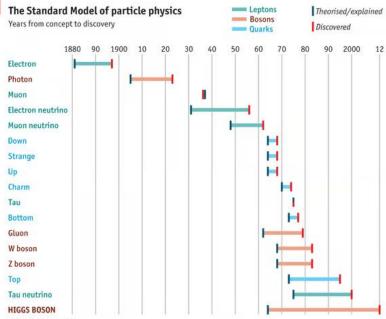
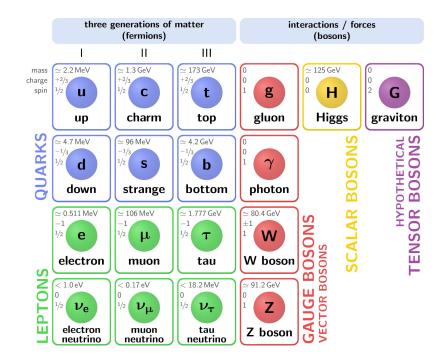
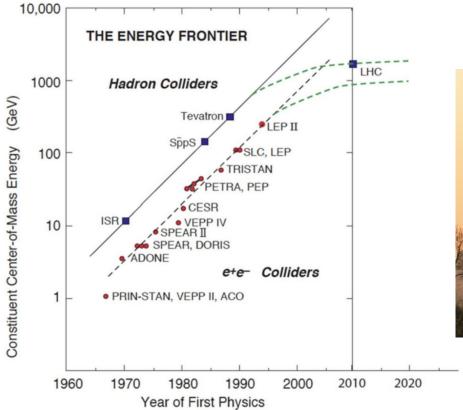
Flavor physics - mid and long term


Radek Žlebčík

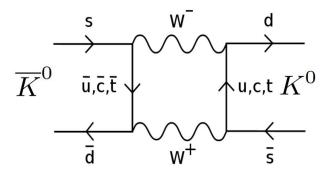
European Strategy Update Trieste meeting, November 20, 2024




Direct discoveries – a 120 years success story

Source: The Economist

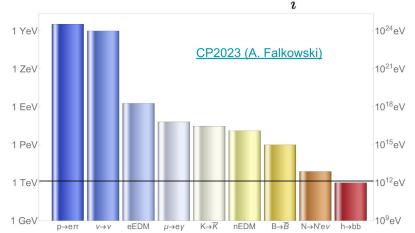
Energy crisis?



FCC (~2060)

R. Harlander, at al., Eur.Phys.J.H 48 (2023)

Indirect searches - a possible (the only?) way forward

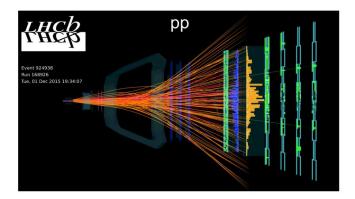

Top-quark (175 GeV): an important contributor to K amplitude (0.5 GeV)

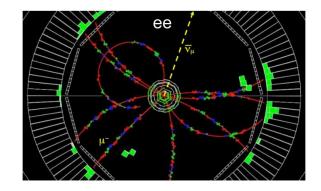
Virtual particles of arbitrarily high mass may be exchanged affecting physics at lower, observable energies

- **Rare processes**, where SM contributions are suppressed
- Precise measurements and predictions to overconstrain models
 → Most of SM degrees of freedom associated with flavor

Expanding the SM

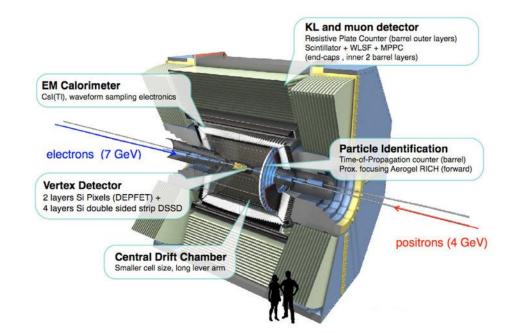
$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + rac{1}{\Lambda^2} \sum_{i} C_i O_i$$


Sensitivity to higher energy scales than in direct LHC searches for new particles (different processes probe different Wilson coefficients C_i)



- One of 4 large LHC experiments (27 km ring)
- pp collisions at 14 TeV
- ~ 100k B mesons / s
- >100 tracks per collision

- e⁺e⁻ SKEKB accelerator (3 km ring)
- e⁺e⁻ collisions at 10.6 GeV
- ~ 50 BB mesons / s
- ~10 tracks per collision



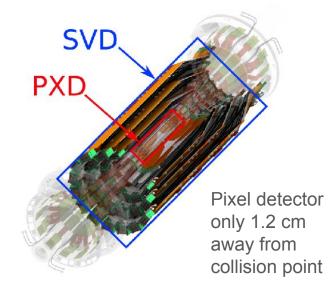
Huge samples.

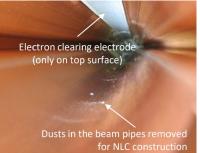
Known initial state + hermetic detector 5

Belle II detector

- Hermetic coverage and known initial states:
 - → Good reconstruction of final states with multiple neutrinos
- Barrel geometry + good calorimeter:
 - → Good reconstruction of final state photons

These features offer Belle II <u>unique</u> access to a number of channels that are considered superbly promising for indirect searches

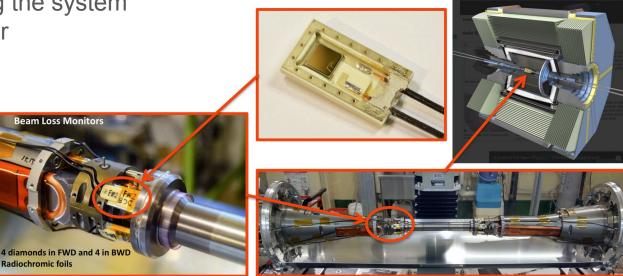

It takes two to tango...


SuperKEKB has had a very troubled start up. After 5 years still 20x below design performance.

Recent example: sudden beam instabilities at high beam currents → Frequent uncontrolled beam aborts (These can and have damaged our pixel detector)

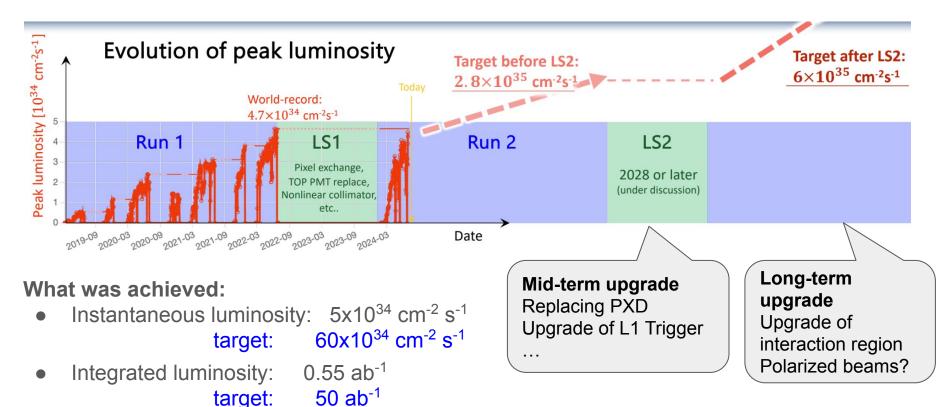
A lot of run time dedicated to machine studies

- Dust thought as the most likely cause of the problems
 - \rightarrow 15 pipes turned upside down

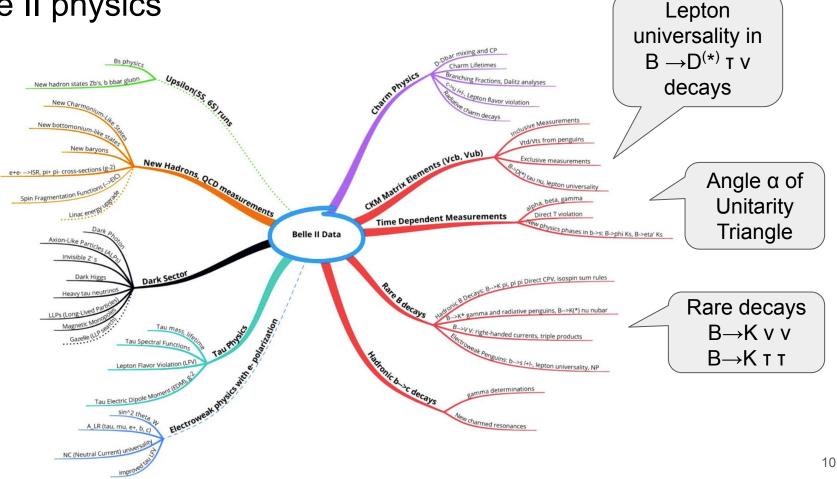


Key role for Trieste's diamonds

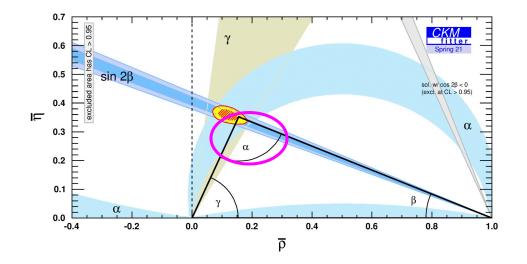
- Only defense against unstable beams are rapid beam aborts
- Diamond sensors developed at Trieste trigger beam aborts to keep detector safe
- Keep improving the system to make it faster


Nucl.Instrum.Meth.A 997 (2021)

Small (4.5 x 4.5 x 0.5) mm³ artificial diamond crystals



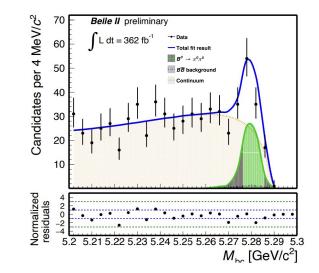
SuperKEKb & Belle II prospects



Belle II physics

Angle α : Demonstrating the unicity of Belle II CPV program

$$α = (84±4)^{\circ}:$$
e.g. $B^0 → π^0 π^0$



A Trieste enterprise

- Angle α determined from BRs & A_{CP} of all charge combinations of B $\rightarrow \pi\pi$
- Very difficult for LHCb, due to 4 photon event signature and no track
- Graph neural network Flavor Tagger to determine flavor of the other B meson (+30% performance gain over Belle/BaBar)

Belle II measurement: BR = $(1.26 \pm 0.20 \pm 0.11) \ 10^{-6}$

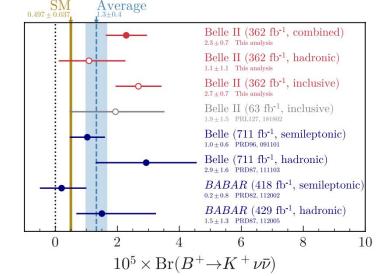
Single Belle II result better than world average (1.59 ± 0.26) 10⁻⁶ despite the sample size

Belle & BaBar avg. $\alpha = (88\pm5)^{\circ}$ **World avg.** α = (84.1±4.2)°

The Belle II Snowmass expectation (50 ab^{-1}) is ±1° precision for α .

Made in Trieste

The first Belle II highlight: $B^{+} \rightarrow K^{+} v \; v$


PRD 109, 112006 (2024)

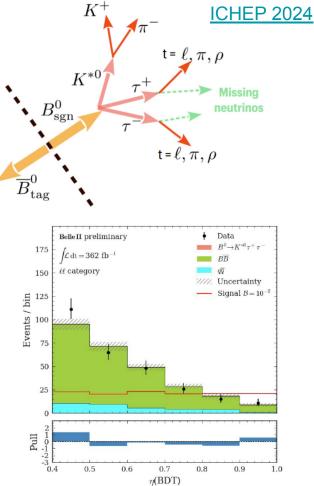
- A rare FCNC b \rightarrow s decay
- Theoretically "clean" due to only 1 or 0 charged particles in the final state
- Belle II territory, too large BG in pp
- Possibility to also study decays with K_s or K* instead of K⁺

B(B⁺ → K⁺
$$\nu \overline{\nu}$$
) = (2.3 ± 0.5(stat)^{+0.5}_{-0.4} (syst)) × 10⁻⁵
(SM prediction: 0.6×10⁻⁵, µ = 3.8+1.2)

Projections of µ unc.:

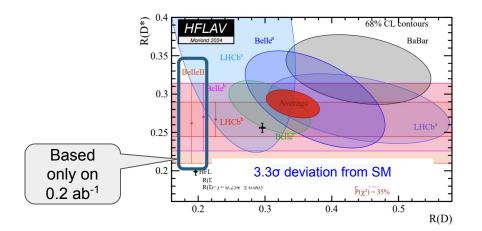
Decay	$1\mathrm{ab}^{-1}$	$5\mathrm{ab}^{-1}$	$10\mathrm{ab}^{-1}$	$50\mathrm{ab}^{-1}$
$B^+ \to K^+ \nu \bar{\nu}$	0.55(0.37)	0.28(0.19)	0.21 (0.14)	0.11(0.08)
$B^0 \to K^0_{\rm S} \nu \bar{\nu}$	2.06(1.37)	$1.31 \ (0.87)$	1.05(0.70)	0.59(0.40)

A 2.7 σ excess w.r.t. the SM prediction to be probed with more data

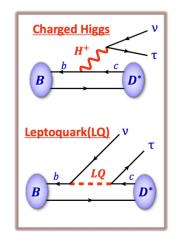

Another Belle II highlight: $B^0 \rightarrow K^{*0} \tau \tau$

- A rare (10⁻⁷) b→s decay that probes lepton universality
- Hard to measure in pp due to final state v's

$$BF(B^0 o K^{*0} au^+ au^-) < 1.8 \ imes 10^{-3}$$
 at 90% CL


Exclusion limit dominated by stat. precision. The full Belle II statistics should allow 5x10⁻⁴

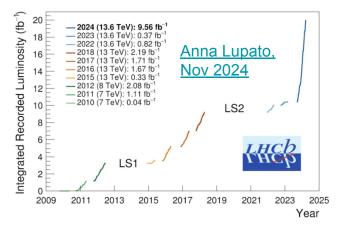
In Trieste we measure associated $B^+{\rightarrow}K^+{\ensuremath{\mathsf{T}}}$ τ channel



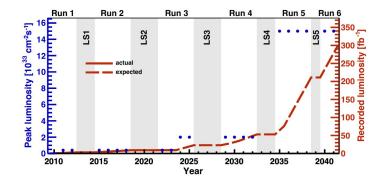
Lepton flavor universality in $b \rightarrow c$ transitions

- Long-standing $b \rightarrow c$ tau excess in $b \rightarrow c$ ell transitions
- Observed by three experiments. Reached 3 sigma
- Points to few GeV tree-level physics (leptoquarks?)
- Belle results are the most precise
- Belle II better than Belle at same luminosity
- Clearly one of the flagships in the next decade

Possibly different BSM contribution for D and D*


$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})} \quad (\ell = e, \mu)$$

Will the anomaly persist?


15

LHCb prospects

• Hardware level-zero trigger removed in 2022, full transition to software-based triggering. Impressive hike in data size

- <u>TDR</u> for HL-LHCb recently approved
- Expected 30x higher luminosity than in Run 1+2

Observable	Current LHCb		Upgrade I		Upgrade II
	(up to	$9{\rm fb}^{-1}$)	$(23{\rm fb}^{-1})$	$(50{\rm fb}^{-1})$	$(300{\rm fb}^{-1})$
CKM tests					
$\gamma \ (B \to DK, \ etc.)$	4°	[9, 10]	1.5°	1°	0.35°
$\phi_s \; (B^0_s o J/\psi \phi)$	$32\mathrm{mra}$	d [8]	$14\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$
$ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$		[29, 30]	3%	2%	1%
$a_{\rm sl}^d \ (B^0 o D^- \mu^+ \nu_\mu)$	36×10	$^{-4}[34]$	8×10^{-4}	5×10^{-4}	2×10^{-4}
$a_{ m sl}^s \ (B_s^0 o D_s^- \mu^+ u_\mu)$	$33 \times 10^{\circ}$	$^{-4}$ [35]	10×10^{-4}	7×10^{-4}	3×10^{-4}
Charm					
$\Delta A_{CP} \ \left(D^0 \to K^+ K^-, \pi^+ \pi^- \right)$	29×10	$^{-5}$ [5]	$13 imes 10^{-5}$	8×10^{-5}	$3.3 imes10^{-5}$
$A_{\Gamma} \left(D^0 \to K^+ K^-, \pi^+ \pi^- \right)$	11×10	$^{-5}$ [38]	$5 imes 10^{-5}$	$3.2 imes 10^{-5}$	$1.2 imes 10^{-5}$
$\Delta x \ (D^0 \to K^0_{\rm s} \pi^+ \pi^-)$	18×10	$^{-5}$ [37]	$6.3 imes10^{-5}$	$4.1 imes 10^{-5}$	$1.6 imes10^{-5}$
Rare Decays					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu$	-) 69%	[40, 41]	41%	27%	11%
$S_{\mu\mu} \ (B^0_s o \mu^+ \mu^-)$	_		_		0.2
$A_{\rm T}^{(2)}~(B^0 o K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043	0.016
$A_{\rm T}^{\rm Im} \ (B^0 \to K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043	0.016
$\mathcal{A}_{\phi\gamma}^{\overline{\Delta}\Gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$	[51]	0.124	0.083	0.033
$S_{\phi\gamma}(B_s^0 \to \phi\gamma)$	0.32	[51]	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_{b}^{0} \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$	[53]	0.148	0.097	0.038
Lepton Universality Tests	0.20				
$\overline{R_K \ (B^+ \to K^+ \ell^+ \ell^-)}$	0.044	[12]	0.025	0.017	0.007
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12	[61]	0.034	0.022	0.009
$R(D^*) \ (B^0 \to D^{*-}\ell^+\nu_\ell)$	0.026	[62, 64]	0.007	0.005	0.002

1 fb⁻¹ in pp ~ 1 ab⁻¹ in ee

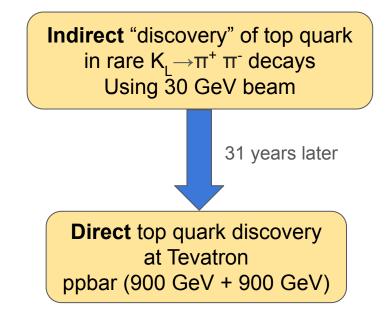
Conclusions

- Indirect searches for new interactions allow to look much above 1 TeV LHC energy scale
- After a 30-year exploration, quark flavor sector still offers several sensitive and reliable probes.
- And many are unique to Belle II
 - Measurements of the B⁰ mixing phase using gluonic penguin processes.
 - Searches for rare processes yielding multiple neutrinos in the final states
 - \circ Settling the long-standing anomalies observed in b \rightarrow tau excess
- It will be an exciting ride, in competition and synergy with similar measurements done by LHCb and CMS/ATLAS

https://indico.phys.nthu.edu.tw/event/109/

Possible Belle II upgrades

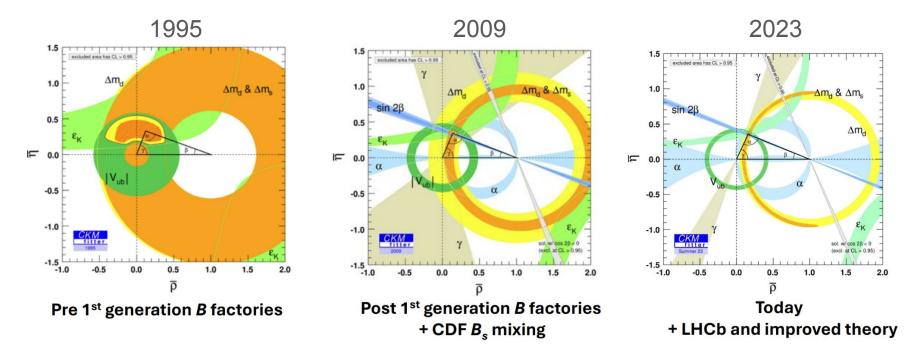
arXiv:2406.19421



Some of the long-term plans:

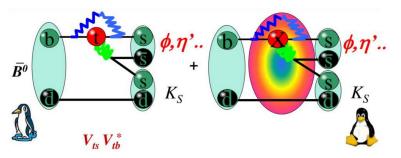
- Redesigning interaction region (new QCS) \rightarrow to increase luminosity
- Polarized beams \rightarrow e.g. for tau (g-2) measurement

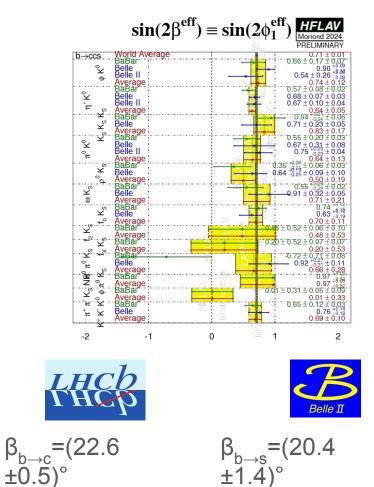
CP violation was an early success story


- **1964:** CP violation observed in the K⁰-K⁰bar system (at that time 3 quarks known)
- **1973:** Kobayashi, Maskawa realize that we need 6 quarks for CP in SM
- **1974**: Charm quark discovery
- **1977:** Bottom quark discovery
- **1995:** Top quark discovery

Indirect discovery of 3 new quark flavors happened 30 years earlier with 30 times smaller beam energy.

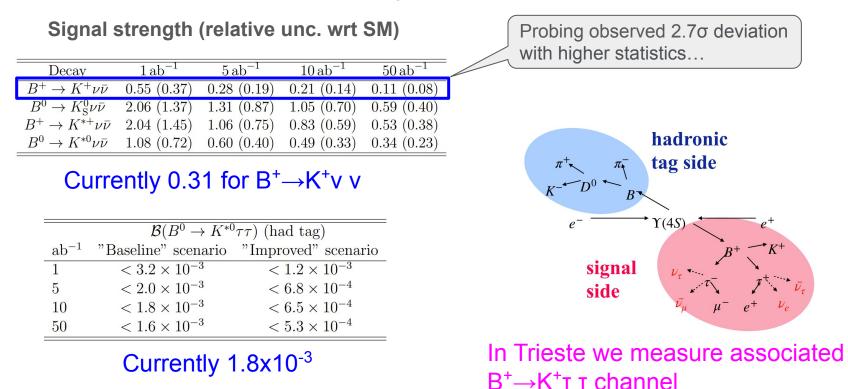
(Somewhat provocatively: lack of non-SM physics at the LHC "predicted" by SM-like flavor results at Babar/Belle/CDF a decade earlier)


Exploring CPV: a 30-year tour de force precision


All looks consistent with the SM -- within a remaining 10% uncertainty. Non-SM physics will be either visible in suppressed processes or blind to flavor.

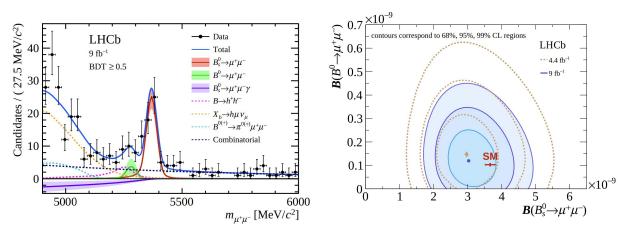
CP violation in rare $b \rightarrow s$ decays

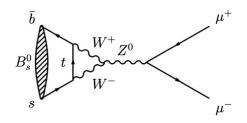
- New physics can impact the phase of the amplitude of rare b→s decays (e.g. B⁰→η' K⁰_s) changing the CKM Unitarity Triangle angle sin 2β →Hunting for deviations wrt tree-level b→c channels
- Measurements have been performed only at B factories

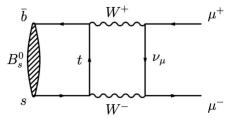

Expected $\pm 0.4^{\circ} \beta_{b \rightarrow s}$ precision with full BII data.

Consistent within 1.5o

Belle II prospects for rare $B \rightarrow K \vee \vee \& B \rightarrow K \tau \tau$ decays


• The <u>Snowmass</u> Belle II unc. projections:


The LHCb highlight: $B_{(s)} \rightarrow \mu^+ \mu^-$


- A very rare helicity-suppressed decay (at Belle II we have too few B mesons to see it)
- BRs predicted by Standard Model:

 $\begin{array}{lll} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &=& (3.66 \pm 0.14) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &=& (1.03 \pm 0.05) \times 10^{-10} \end{array}$

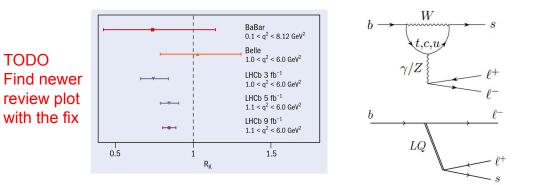
Phys.Rev.Lett. 128 (2022) 4, 041801

Sensitive to Z', leptoquarks, non-SM higgs...

Decay rates compatible with SM so far...

Trouble with (theoretical particle) Physics

- The Standard Model persists from 1970s although there are several unexplained phenomena
- Too many BSM theories that are not falsifiable by current experiments



Prospects for rare $b \rightarrow s$ decays

 $BR(b \rightarrow s \; \mu^{\scriptscriptstyle +} \; \mu^{\scriptscriptstyle -}) \; / \; BR(b \rightarrow s \; e^{\scriptscriptstyle +} \; e^{\scriptscriptstyle -})$

- LHCb has advantage of higher statistics
- At Belle II electron & muons efficiencies almost the same*

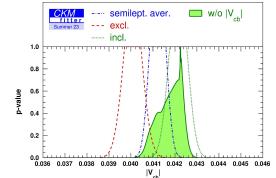
 \rightarrow better sys. cancellation in the ratio

*Remember Dec 2022 disappearance of LHCb R_{k} anomaly

$\text{BR(b} \rightarrow \text{s v v)}$

- This is a Belle II territory
 → too large BG in pp
- Theoretically cleaner due to only 1 or 0 charged particles in the final state
- Chance to further probe 2.7 σ deviation in B(B⁺ \rightarrow K⁺vv) and also look at modes with K_S or K^{*}

B(B⁺ → K⁺ $\nu \overline{\nu}$) = (2.3 ± 0.5(stat)^{+0.5}_{-0.4} (syst)) × 10⁻⁵

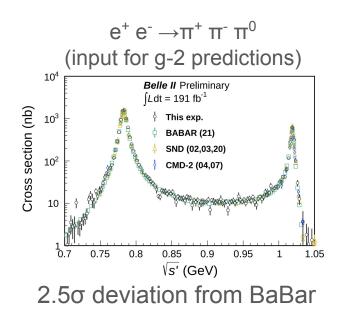

2.7 σ deviation wrt SM (0.6x10⁻⁵)

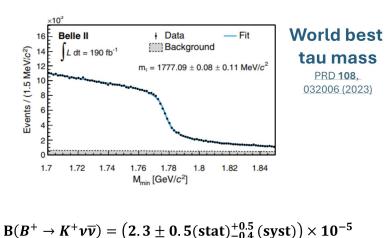
BII also searches for $b \rightarrow s t^+ t^-$

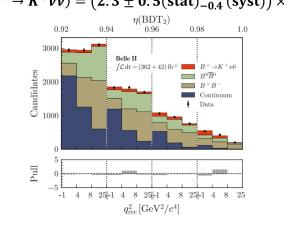
$|V_{cb}|$ and $|V_{ub}|$: Inclusive vs Exclusive puzzle

- A long standing difference between: inclusive (i.e. $B \rightarrow X_c | v$) exclusive (e.g. $B \rightarrow D^* | v$) determination of $|V_{cb}|$ (and $|V_{ub}|$)
- The bias can come from theory and/or suboptimal analysis technique
- Disagreement deteriorates the power to overconstrain the CKM elements

New exclusive $|V_{cb}|$ results taking into account full differential information: BaBar: (41.1 ± 1.2) 10⁻³ Belle: (41.0 ± 0.7) 10⁻³ Just between old excl. & incl. results

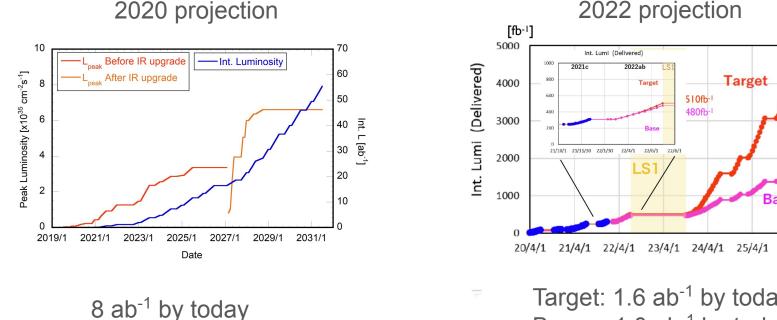

1.0 0.9 0.0055 Inclusive 0.8 0.0050 0.7 0.0045 0.6 > 90.0040 0.5 0.4 0.0035 0.3 0.0030 Exclusive 0.2 0.0025 0.1 fitter excluded area has CL 0.0 0.036 0.038 0.040 0.042 0.044 0.046 V_{ch}


> Both LHCb and Belle II expect to reduce unc. by several times.


Vab.

Highlights from Belle II

- About 50 published measurements so far
- Some of them are world best although Run 1 luminosity (0.4 ab⁻¹) is about half of the Belle experiment



2.7o "tension" with SM

Belle II luminosity expectations

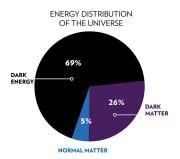
Target: 1.6 ab⁻¹ by today Base: 1.0 ab⁻¹ by today

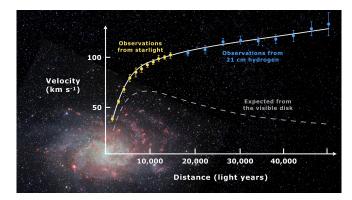
Base

26/4/1

In reality 0.55 ab⁻¹ by today, hopefully surpassing Belle in ~1.5year

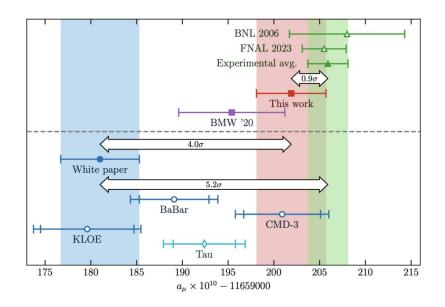
Observations challenging the Standard Model

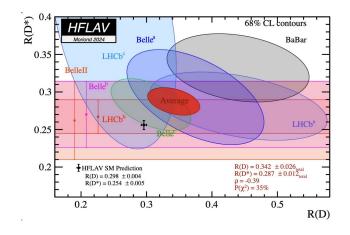

m


0

Neutrino masses

1.08.0 un fraction 9.0 Flavour fraction 9.0 Flavour fraction 1.0 E flavour fraction 0.0 100 10 Distance (km) **Neutrino Mass Ordering** Daya Bay experiment m^2 m^2 v (Phys. Rev. Lett. 115 (2015)) V., Normal ν, Inverted EH1 EH2 $\mathsf{P}(\overline{v}_{e} \to \overline{v}_{e})$ ma EH3 solar~7×10⁻⁵eV² 0.95 Best fi atmospheric ~2×10-3eV2 atmospheric $\sim 2 \times 10^{-3} eV^2$ m 0.9 solar~7×10-5eVm, 0 0.2 0.4 0.6 0.8 L_{eff} / (E_) [km/MeV] 0


Dark Matter



Observations in the "gray" area

g-2

B anomalies

These are not at the energy frontier...