Powering tomorrow's discoveries: INFN Trieste in the European Strategy - 20/11/2024

Landscape Physics Opportunities Ahead

3

The Big Open Questions in Fundamental Physics

- What is the nature of **dark matter**?
- What is the origin of **neutrino masses**?
- Why does **QCD conserve CP**?
- What is the **origin of fermion masses** and mixings?
- Why the specific assignment of **charges** in the SM?
- Why is the **electroweak scale** smaller than the Planck scale? How is it stable?
- What is the origin of the **baryon asymmetry of the Universe**?
- What iduces the **accellerated expansion** of the Universe?
- What was the mechanism underlying **inflation**?
- How does **gravity behave at the quantum level**?

The Big Open Questions in Fundamental Physics

-
-
- What is the nature of **dark matter**? What is the origin of **neutrino masses**? Why does **QCD conserve CP**? What is the **origin of fermion masses** and mixings? Why the specific assignment of **charges** in the SM? Why is the **electroweak scale** smaller than the Planck scale? How is it stable? What is the origin of the **baryon asymmetry of the Universe**? What iduces the **accellerated expansion** of the Universe? What was the mechanism underlying **inflation**? How does **gravity behave at the quantum level**?
-
-
-
-
-
-
-

The Big Open Questions in Fundamental Physics

Most of these **require physics beyond the Standard Model** to be addressed.

Our **curiosity** motivates **experimental efforts** for finding those answers.

-
-
- Only the **electroweak hierarchy problem** clearly points to **new dynamics at the TeV scale**.

Looking for answers

-
-
-
-
-
-
-
- - -

Looking for answers

large targets (DM, neutrinos)

electromagnetic

gravitational

Looking for answers

Energy & Intensity Frontiers

Microscopes: colliders … and in the micro.

 $E =$

large targets (DM, neutrinos)

electromagnetic

gravitational

We shine the microcosm with **QCD and EW "light" in the** *atto***-scale**.

=

1 TeV

We shine the microcosm with **QCD and EW "light" in the** *atto***-scale**.

=

It allowed the **discovery and characterization of the Higgs boson** at the **10% level**.

We shine the microcosm with **QCD and EW "light" in the** *atto***-scale**.

=

It allowed the **discovery and characterization of the Higgs boson** at the **10% level**.

Defying expectations, **no new physics has been found up to 1 TeV scale with O(1) couplings** to the SM. This is a **major result! We now know much more than we did in 2010.**

1 TeV

Should we go **deeper**?

The only way to learn how Nature works at even smaller scales, is to test it there!

We shine the microcosm with **QCD and EW "light" in the** *atto***-scale**.

=

It allowed the **discovery and characterization of the Higgs boson** at the **10% level**.

Defying expectations, **no new physics has been found up to 1 TeV scale with O(1) couplings** to the SM. This is a **major result! We now know much more than we did in 2010.**

1 TeV

The **Higgs boson is a completely new phenomenon**, never before observed in Nature: an **elementary scalar** degrees of freedom with **small width**.

It lies at the heart of the **most exotic phenomenon in the Standard Model**: **spontaneous breaking of a gauge symmetry in a QFT**.

The **Higgs boson is a completely new phenomenon**, never before observed in Nature: an **elementary scalar** degrees of freedom with **small width**.

The **hierarchy problem of the EW scale** is directly connected to it being an elementary scalar.

How elementary is it, given our knowledge?

It lies at the heart of the **most exotic phenomenon in the Standard Model**: **spontaneous breaking of a gauge symmetry in a QFT**.

The **Higgs boson is a completely new phenomenon**, never before observed in Nature: an **elementary scalar** degrees of freedom with **small width**.

The **hierarchy problem of the EW scale** is directly connected to it being an elementary scalar.

How elementary is it, given our knowledge?

It looks elementary…

It lies at the heart of the **most exotic phenomenon in the Standard Model**: **spontaneous breaking of a gauge symmetry in a QFT**.

The **Higgs boson is a completely new phenomenon**, never before observed in Nature: an **elementary scalar** degrees of freedom with **small width**.

The **hierarchy problem of the EW scale** is directly connected to it being an elementary scalar.

How elementary is it, given our knowledge?

It looks elementary… … until it doesn't.

It lies at the heart of the **most exotic phenomenon in the Standard Model**: **spontaneous breaking of a gauge symmetry in a QFT**.

How elementary is it, given our knowledge?

How elementary is it, given our knowledge?

About as elementary as a pion.

Improving this by a **factor of 10** will qualitatively change the picture.

>> This requires **probing for new states** above the **10 TeV scale** <<

-
-
-
-
-
-
-

Repeating the successful LEP+LHC story:

FCCee *e+e- Z, Higgs, W factory* to study the Higgs at 0.1% level and Z at 0.01% level. **CEPC** 1012 Z bosons, 106 Higgses, 108 WW pairs, in a clean and precise environment

SppC 84 TeV pp collider (14T magnets), typical **partonic energy** available of about **15TeV**. <https://indico.cern.ch/event/1439072>

FCChh

Repeating the successful LEP+LHC story:

FCCee *e+e- Z, Higgs, W factory* to study the Higgs at 0.1% level and Z at 0.01% level. **CEPC** 1012 Z bosons, 106 Higgses, 108 WW pairs, in a clean and precise environment

SppC 84 TeV pp collider (14T magnets), typical **partonic energy** available of about **15TeV**. <https://indico.cern.ch/event/1439072>

FCChh

ILC (CLIC) *Linear e+e- Higgs, W, top factory* to study the Higgs at <1% level + top mass. Energy from 250GeV (Zh) up to **1 TeV** (3TeV for CLIC). *20-50 km*

The linear *e+e-* **option**

Repeating the successful LEP+LHC story:

FCCee *e+e- Z, Higgs, W factory* to study the Higgs at 0.1% level and Z at 0.01% level. **CEPC** 1012 Z bosons, 106 Higgses, 108 WW pairs, in a clean and precise environment

SppC 84 TeV pp collider (14T magnets), typical **partonic energy** available of about **15TeV**. <https://indico.cern.ch/event/1439072>

FCChh

Muon Collider *μ+μ- collider at 10 TeV*. All energy available for hard scattering. 107 Higgses, copious amounts of EW states, relatively clean environment. *10km ring* [2407.12450]

The revolutionary technology

Linear e+e- Higgs, W, top factory to study the Higgs at <1% level + top mass.

ILC (CLIC) Energy from 250GeV (Zh) up to **1 TeV** (3TeV for CLIC).

The linear *e+e-* **option**

11

The Microscopes of the Future

The Age of the Cathedrals

The Age of the Cathedrals

The Age of the Cathedrals

The direct and the indirect ways

New Physics can be searched for **looking directly for the new particles**, or **looking for the effects of new particles in SM processes**.

The direct and the indirect ways

If $E > \Lambda_N$ P we can **produce the new states** and look for the signatures of their decays in detectors.

New Physics can be searched for **looking directly for the new particles**, or **looking for the effects of new particles in SM processes**.

Direct searches of heavy NP

In a **muon collider**, all the energy is available for the hard scattering.

In **proton-proton** collisions the available partonic energy is suppressed by PDFs.

$$
M_x \sim \frac{\sqrt{5} \cdot P}{10}
$$

Anything colored. Much **smaller if not colored**

Mass reach in pair-pruduction

$$
M_x = \frac{\sqrt{5}mv}{2}
$$

(assuming QCD & EW couplings)

Direct searches of heavy NP

In a **muon collider**, all the energy is available for the hard scattering.

$$
M_x = \frac{\sqrt{5}m}{2}
$$

In **proton-proton** collisions the available partonic energy is suppressed by PDFs.

Direct searches of heavy NP

In a **muon collider**, all the energy is available for the hard scattering.

In **proton-proton** collisions the available partonic energy is suppressed by PDFs.

The huge number of events would allow for a precise characterization of the new state.

15

The direct and the indirect ways

New Physics can be searched for **looking directly for the new particles**, or **looking for the effects of new particles in SM processes**.

If instead **E** ≪ **ΛNP** we can **use the EFT approach** and look for **deviations in SM processes**.

Heavy New Physics and the EFT paradigm

E

 $+\Lambda$

— mEW

UV theory

SMEFT

At **low energies**, their effects are **suppressed** by powers of

If instead **E** ≪ **ΛNP** we can **use ^Effective Field Theories** to describe all the **deviations from the SM** consistent with gauge symmetries.

$$
\mathcal{I}^{(6)}_{i} + \mathcal{O}(\Lambda^{-4})^*
$$
 Standard Model
Effective Field Theory

$$
\frac{E^2}{\Lambda^2}, \frac{v^2}{\Lambda^2} \ll 1
$$

* I neglect the d=5 Weinberg operator since its effects in colliders are very suppressed by the small neutrino masses.

 δg_{EW}

 $g_{EM}^{\rm SM}$ *EM*

Leverage the **rarity** of the SM process, **small** c_{SM} More in backup slides.

$$
\frac{c_i}{\Lambda^2} (9^{16})
$$

$\delta \mathscr{A}_{\rm EF}^{\rm NP}$ E^2c EFT ∼ $\mathscr{A}_{\mathsf{SM}}$ $g^2_{\rm SM}\Lambda^2$ \mathcal{E},\mathcal{E}

Heavy New Physics and the EFT paradigm

Leverage the **energy2 enhancement** of the EFT contribution.

Higgs Physics

Testing for **deviations in Higgs couplings** gives us access to **new physics coupled to the Higgs**.

Higgs SM couplings are predicted from masses.

Higgs at Future Colliders

[1905.03764, 2103.14043]

(FCCee, CEPC, ILC, CLIC₃₈₀)

~2% ~0.3% ~0.3% ~0.1%

low-E Higgs factories

TeV-scale

MuC3 MuC30

Higgs at Future Colliders

Higgs at Future Colliders

Which mass scale does it probe?

Higgs potential

Measuring the **Higgs trilinear coupling** is important to confirm the SM picture in the Higgs potential and test for many BSM scenarios with important implications: **EW phase transition**, **Higgs stability**, **additional neutral scalars**, etc..

FCC-hh and a 10 TeV MuC have similar capability.

at the 1 TeV scale

21

Electroweak physics

FCCee will deliver **6 x 1012 Z bosons**: 2 x 105 times the number of Z bosons produced at LEP-1.

Electroweak physics

+ 108 W bosons and precision studies of *e*−*e*⁺ → *f*¯*f* at WW and ttbar thresholds. **Challenging level for theory and experimental uncertainties**

FCCee will deliver 6 \times 10¹² Z bosons: 2 \times 10⁵ times the number of Z bosons produced at LEP-1.

Electroweak physics

FCCee will deliver **6 x 1012 Z bosons**: 2 x 105 times the number of Z bosons produced at LEP-1.

The **Muon Collider** instead **probes the same effective operators in high-energy scattering** with 1% precision.

Challenging level for theory and experimental uncertainties

$$
\frac{\delta \sigma}{\sigma_{SM}} \sim \frac{E^2 c}{g_{SM}^2 \Lambda^2} \lesssim 1\,\%
$$

c $\gtrsim 150 \,\mathrm{TeV}$ **10TeV MuC**

We will need to learn how to deal with EW radiation

Higgs compositeness

Strong coupling Compositeness scale

 $1 \leq q_{*} \leq 4\pi$

[review: 1506.01961]

Higgs compositeness

Strong coupling Compositeness scale

[review: 1506.01961]

Reach of different colliders from **Higgs couplings** and high-energy **di-lepton**, $t\bar{t}$, $b\bar{b}$, and **diboson** production.

HL-LHC $M_x \geqslant 5$ TeV **FCCee+hh** $M_x \ge 16$ TeV **CLIC 3TeV** $M_x \ge 18$ TeV **MuC 10TeV** M_{x} \geqslant 50 TeV

 $1 \leq q_{*} \leq 4\pi$

LHC was a machine built with a **precise primary goal: discovering the Higgs**. It delivered this, and so much more. We have been able to push it beyond all expectations.

Conclusions

The **next collider will be an exploration machine**, allowing us to probe the microcosm well **below the atto-scale**. The only way to know what's there is to **go and look!**

The **indirect** and the **direct** ways give us **complementary** and crucial information, this mixed goal can be achieved:

 - with **FCCee + FCChh**, giving a perspective for particle physics **until the end of the century**, - with a **revolutionary muon collider**, paving the way for the next-to-next generation of experiments.

These collider projects are **modern cathedrals of science and human ingenuity**,

it is a privilege to live at a time and place where we have the chance to work on such projects.

Backup

Flavour

Bounds on Λ (taking c_i ⁽⁶⁾ = 1) from various processes

Processes rare or forbidden by the accidental SM symmetries and properties allow to probe indirectly very large New Physics scales.

If New Physics is present **at the TeV scale**, **its flavour structure should be constrained**: **the BSM Flavour Problem**.

The c(6) coefficients that violate flavour or CP should be suppressed: MFV, U(2), etc.

$$
\frac{\partial C_{\text{EFT}}^{\text{NP}}}{C_{\text{EFT}}^{\text{SM}}} \approx \frac{c}{G_F c_{\text{SM}} \Lambda^2} \qquad \frac{C_{\text{c}}^{(6)}}{\beta_s \sqrt{\frac{2}{\beta}} C_{\text{F}}^{\text{M}}}
$$

Particle production (10^9) Belle II FCC-ee

> Attribute All hadron species High boost Enormous producti Negligible trigger Ic Low backgrounds Initial energy constr

Flavour at FCC-ee

6 x 1012 Z bosons provide a very large number of all **b and c mesons and τ leptons**, allowing to study their rare or forbidden decays in a clean environment.

- **o** few % level in $B_{(c)} > \tau v$,
- O(30)% level in B > K* τ τ,
- $<$ 1% level in B > K^(*) v v,
- 10-11 sensitivity on the BR of LFV τ decays.
- \circ 0.1% (0.05%) precision on $|V_{cb}|$ ($|V_{cs}|$) from
- \bigcirc …

[2203.06520 + ECFA, FCC studies]

Flavour at Muon Colliders

Test **same flavour-violating interaction** in **rare meson decays** or in **high-energy processes**. One can leverage the **E2 enhancement** of the new physics scattering amplitude.

A 10 TeV MuC is sensitive to scales of about 100 TeV.

This annihilation process has small cross section at large collider energies.

Max σ at ~240 GeV: e+e-Higgs factories.

A **10 TeV MuC** has **107 Higgs boson** events $(\sim \# Z's$ at LEP)

At an e+e- machine the main process is $e^+e^- \rightarrow Z h$

Another possibility is via **Vector Boson Fusion** (**VBF**):

Higgs production at lepton colliders

We want to probe EW-size cross sections with % precision:

$$
V_{c\psi} \sim \frac{\alpha^2}{S} \sim 4 \text{fb} \left(\frac{46 \text{TeV}}{\sqrt{5}}\right)^2
$$

29

Muon Colliders

ave % precision, need 10k events:

Assuming 107 s/year operation, the **instantaneous luminosity** required is:

$$
L \sim \frac{54}{\text{time}} \left(\frac{\sqrt{5}}{10\text{TeV}}\right)^2 10^{35} \text{ cm}^2\text{s}^{-1}
$$

[1901.06150, 2303.08533]

Integrated luminosity

The MuC is a short experiment: about **5 years** needed to collect the required integrated luminosity.

