IDEA Dual Readout Fibre Calorimetry

Roberto Ferrari

For the fibre-sampling dual-readout calorimetry groups

15 October 2024

Istituto Nazionale di Fisica Nucleare Sezione di Pavia

Disentangle relativistic (i.e. electromagnetic) and non relativistic (i.e. nuclear) components of hadronic shower

 \rightarrow get (compensate for) f_{em} event by event

both scintillation & Cherenkov light

almost only scintillation light

dual-readout algebra

 $S = E \times [f_{em} + S \times (1 - f_{em})]$ $\mathbf{C} = \mathbf{E} \times [\mathbf{f}_{em} + \mathbf{C} \times (1 - \mathbf{f}_{em})]$

f_{em} = electromagnetic shower fraction $s = (h/e)_s$, $c = (h/e)_c$: detector-specific constants

by solving the system, both E and f_{em} can be reconstructed

E measured at em energy scale

more on dual-readout formulae ...

 $(1-f_{em})$ can be reconstructed within (unknown) constant factor (>) O(1)

$$> \left(\frac{h}{e}\right)_{c} \Rightarrow \chi < 1$$

x measurable if E known — **γ** can be extracted from testbeam data

DREAM/RD52 dual-readout "spaghetti" prototypes

2003 DREAM	Cu: 19 towers, 2 PMT each 2 m long, 16.2 cm radius Sampling fraction: 2% Depth: ~10 λ_{int}	Copper \downarrow 2.5 \downarrow 4
2012 RD52	Cu, 2 modules Each module: $9.2 \times 9.2 \times 250 \text{ cm}^3$ Fibers: $1024 \text{ S} + 1024 \text{ C}$, 8 PMT Sampling fraction: ~4.6% Depth: ~10 λ_{int}	
2012 RD52	Pb, 9 modules Each module: $9.2 \times 9.2 \times 250$ cm ³ Fibers: 1024 S + 1024 C, 8 PMT Sampling fraction: ~5.3% Depth: ~10 λ_{int}	

RD52 expected hadronic performance

NIM A 824 (2016) 721

particle ID (electron/hadron discrimination)

Combination of cuts: >99% electron efficiency, <0.2% pion mis-ID

IDEA: Innovative Detector for e+e- Accelerators

IDEA baseline concept

Muon chambers MUDWELL in roturn w

- μ-RWELL in return yoke
- + Dual-readout calorimetry 2 m / 7 λ_{int}
- Thin superconducting solenoid
 - ◆ 2 T, 30 cm, ~ 0.7 X₀ , 0.16 λ_{int} @ 90°

Highly transparent for tracking

- Si pixel vertex detector
- Drift Chamber
- Si wrappers (strips)
- ✦ Beam pipe: r ~ 1.5 cm

Three main activity pillars:

- 1. Europa: INFN, Sussex University \rightarrow mainly (but not only) fibre-sampling calorimetry
- 2. Korea \rightarrow projective fibre-sampling calorimetry
- 3. U.S. (Calvision project) \rightarrow mainly (but not only) crystal em calorimetry

keywords: dual readout, high granularity & timing

- Gaussian resolution
- Adequate separation of W / Z / H

IDEA 2020 em-size bucatini prototype (EU)

Nine ~3.5×3.3 cm² towers made of capillary brass tubes

Eight (surrounding) towers read out with PMTs

Scintillation fibers

Cherenkov fibers

Beam tests in 2021 and 2023

CERN-SPS H8 beam line

- □e⁺ beam in energy range of 10-100 GeV
- Energy and position scan
- Purity issues (critical in 2021)

Lateral shower profile (2021 TB)

HiDRa – Highly granular Dual Readout demonstrator (EU)

Construction technique and mechanical precision

Semi-automatic system for planarity measurement: 90 measurements per minimodule

Production started in November 2023: 38/80 minimodules assembled First test beam with 36 modules in August-September 2024 (PMT readout only)

O(10 µm) precision on minimodule height (calor2024)

Integration of highly granular modules

2024 TB

36 minimodules in 3×12 arrangement [+ integrate position measurement w/ ATLAS_PIX3 sensors]

PMT-only: 36 + 36 PMT signals to read out

Focus on: understand/assess calibration procedure, operation and G4 validation

3×128 mm = 384 mm

12×28.3 mm = 339 mm

2024 TB

H8 beam line (as usual)

understanding in progress

2 weeks of data taking [week of August 28th & September 11th]

2024 TB

Very preliminar results on linearity

Work in progress

Production in steady state: rate ~ 8 minimodules / month

• Target: finish ~ end 2024 / beg. 2025

Tube and fibre quality quite good but rejection close to threshold (5%) \rightarrow need some more pieces

- Fibres \rightarrow ok (replacement at no cost)
- Tube "refurbishing" \rightarrow (after negotiation) expected ~4600 new pieces

Fibre: limiting factor in assembly procedure

• fibre insertion: at present 1 minimodule / 12-16 h (!)

High-granularity modules

- SiPMs delivered early September
- Mounting strategy tuned
- Preproduction qualification expected within 1Q 2025

Beam test with a (PMT-only) 36 minimodule setup \rightarrow define and tune calibration procedure

Alternative photosensors

- SPAD array in CMOS:
- complex functions embedded in single substrate (e.g. SPAD masking, counting, TDCs)
- front-end electronics optimised to preserve signal integrity (\rightarrow timing)
- simplified assembly of large area detectors
- R&D costs relatively low for design over standard process

digital SiPMs (dSiPMs)

no need for analogue-signal post-processing

longitudinal segmentation w/ timing (U.S.)

Table 1. The energy resolution of the 3D GNN reconstruction with various timing resolutions for longitudinal segmentation.

Timing Resolution $\Delta(t)$, ps	Position Resolution $\Delta(z)$, cm	Energy Resolution σ/E , %	@ 100 GeV	
0	0.0	3.6		
100	5.0	3.9	only Charonkoy fibras	
150	7.5	4.0		
200	10.0	4.2		

longitudinal segmentation w/ timing (Korea)

Full SiPM signal sampled at 10 GHz

FFT used to mitigate exponential tail

Unlocks full longitudinal information about energy deposit

Combined with DR information allows in-shower cluster identification

waveform digitisation (U.S.)

Results with SensL (MicroFC-30020SMT): SiPM with both fast and standard outputs

One-photon event

Two-photon event (simultaneous)

Two-photon event (5 ns apart)

NALU Scientific AARDVARC v3

- Sampling rate 10-14 GS/s
- 12 bits ADC
- 4-8 ps timing resolution
- 32 k sampling buffer
- 2 GHz bandwidth
- System-on-Chip (CPU)

Summary

R&D on dual-readout fibre calorimetry ongoing over three legs (EU, Korea, U.S.) addressing different issues

• Partially exploring different solutions, partially looking at complementary issues

Hadronic scale demonstrators being build

High granularity and Timing as keyword \rightarrow exploit information for both final state identification and event reconstruction → Expore PFAs

DNN being explored \rightarrow first results very interesting

Target for next few years:

- Assess hadronic performance at all levels (single particles, jets, complex final states)
- Assess scalable assembly and readout solution
- Validate GEANT4 simulation in particular concerning hadron shower modeling

Goals

Demonstrate (assess) physics performance for both single hadrons and jets (and electrons)

Validate Geant4 shower modeling

Assess scalable solutions concerning construction and signal readout/handling

Exploit DNN architectures for physics analysis

Assess performance in relevant benchmark physics channels

 \rightarrow Fully exploit dual-readout potential for physics programme at FCC-ee