RD MuCol Bari

L. Longo

INFN The case for a muon collider

A high-energy lepton collider: combining cutting edge discovery potential with precision measurements

Motivations

- No synchrotron radiation: higher energy reachable than e⁺e⁻
- **Point-like** particles: comparable physics reach at lower centre-of-mass than pp
- Good **luminosity** to beam power ratio: high s-channel cross sections at high energy

Fig. 10 MuC luminosity normalised to the muon beam power and compared to CLIC, for different beam energies

Towards a muon collider. Eur. Phys. J. C 83, 864 (2023)

Physics reach

- Potential for new discoveries
- Precise **Higgs** studies
- Direct reach for physics coupled to muons and neutrinos

2024

Muon collider challenges

The muon lifetime is 2.2 µs

Short muon lifetime

Requires fast production, cooling (transverse emittance reduction) and acceleration

Addressed first by US muon acceleration program (MAP), now by IMCC

Muon decay

Asynchronous **beam-induced background** (BIB) in experiments

- 1. Mostly photons, neutrons and electrons
- 2. Incoherent e⁺e⁻ pairs produced at bunch crossing

Mitigation by **shielding** and choice of **detector** technologies

2024

Muon collider challenges

The muon lifetime is 2.2 μs

unch crossing

tor technologies

trons

Short muon lifetime

Requires fast production, cooling (transverse emittance reduction)

What do we need?

Muon accelerator and co

- μ Inject μ Inject 4 GeV Target, π Decay μ Cooling Proton & μ Bunching Channel μ Source Channel
- A **demonstrator** to prove that we are able to reduce the transverse emittance of a muon beam by at least a factor 2.

Muon decay

• Radiation hard detectors with good timing and spatial resolution

Addressed first by US muon acceleration program (MAP), now by IMCC

Asynchronous beam-induced background (BIB) in experiments

Demonstrator

Muon Cooling Demonstrator – Layout Collimation stage -No absorber

and Matching

Collimation and phase rotation

Upstream Instrumentation

Muon Ionization Cooling Experiment (MICE) has already demonstrated that transverse emittance can be reduced (link), by means of low-Z absorber

Goal: reach 25 µm of transverse

emittance

~ 100 m long • Muon source – target and pion capture

IMCC Annual Meeting, 14.03.24

Downstream

Instrumentation

- Beam transport Pion decay
 - Chicane (momentum selection & beam dump)

High-intensity high-energy pion source

Muon phase rotation & collimation (beam preparation system)

Cooling Demonstrator Design Update

Cooling stage - with absorber Dipole &

Solenoid Absorber

RF

- Matching section
- Cooling channel/lattice
- Design process may be informed by the siting options

P. B. Jurj (ICL)

Target

• Design in progress

INFN Demonstrator at CERN

Cooling Demonstrator Design Update - IMCC Annual meeting 2024

Main differences:

- Repetition rate
- Cost

Demonstrator facility siting options at CERN

Two siting options at CERN are currently considered

- Intersection Storage Rings (ISR) complex
 - In the TT7 extraction line
 - Proton beam from the PS
 - Near surface level, lower proton beam power required (10kW), 14 GeV

• TT10

- Pion production system could be shared with the nuSTORM facility
- Proton beam from the PS (26 GeV) or SPS (100 GeV)
- Underground, beam power up to 80 kW (first phase)

P. B. Jurj (ICL)

Cooling Demonstrator Design Update IMCC

Other sites (ex. Fermilab, RAL) have been expressed interested to host the demonstrator [Demonstrator Workshop 30 Oct-1 Nov 24]

G

INFN A TPC for the demonstrator?

Precision measurement of the muon beam emittance is a crucial aspect for the validation of the demonstrator. A TPC with optical readout represents the ideal detector for this purpose:

- already study for beam monitoring in the past, ex. GEMINI
- full particle parameters (x, p) reconstructed in 3D
- very low material budget
- excellent track resolution
- light structures
- higher rate w.r.t. a traditional pad plane thanks to the optical readout
- NOT required pressurized operation

In 2023 the Bari group proposed to realize a large prototype of a TPC (30 cm diameter, 50 cm drift) with optical readout (TimePix4 or similar) tailored to precise, particle-by-particle muon emittance measurement during beam setup phases

- A field-cage suitable for atmospheric-pressure operation is already available.
- The readout part can be easily replaced with an optical one.
- Once ready, the size allows to insert it in a solenoid (available at CERN) and test it in a muon beam.

Figure 8.7: top: simulated track and noise hits in the TPG; middle: highlighted hits are those assigned by the pattern recognition to belong to the same track; bottom track fitted on the salested hits

INFN TPC Bari activities status

TPC prototype with optical readout will be assembled and characterized in the same Bari lab, where the tests for a high-pressure TPC will be performed (AIDA+DRD1):

- HV system ready;
- Gas:
 - system designed and under construction,
 - flowmeters with all the components of the gas system already tested;
- Field Cage:
 - tables have been designed and built;
 - one of the 2 Field-Cage T2K prototype (50x50x100 cm³);
- Optical Readout:
 - under procurement.

The TPC R&D is well included in the DRD1-WP4 program (tracking TCP); moreover all the R&D on optical readout can be re-used for high-pressure TPC, under the hat of DRD1-WP8 (reaction/decay TPC)

Gas system

Field Cage

2024

EXAMPLE NEW Beam-Induced Background

Challenges:

- muon is an unstable particle; its decay products interact with the machine elements generating an intense flux O(10¹⁰) of background particles: beam-induced background (BIB).
- Two conical tungsten shieldings (nozzles), cladded with borated polyethylene, allow the reduction of background by 2-3 orders of magnitude:
 - photons (~ 10^8),
 - neutrons (~ 10^8),
 - electrons/positrons (~10⁶)

The **BIB** comes mainly from **photons** (96%) and **neutrons** (4%):

- BIB depends on increasing the distance from the beam axis;
- average deposited energy lower than 1 GeV.

Fig. 25 BIB hit occupancy in the calorimenter barrel region in a single bunch-crossing.

Fig. 28 Energy deposited by the BIB in a single bunch-crossing in the HCAL.

INFN A MPGD Hadronic Calorimeter

Bari group proposal: a sampling hadronic calorimeter with micro-pattern gaseous detector as readout layers

MPGD features:

- cost-effectiveness for large area instrumentation
- radiation hardness up to several C/cm²
- discharge rate not impeding operations
- rate capability O (MHz/cm²)
- high granularity
- time resolution of few ns

Past work:

- <u>CALICE collaboration</u>: a sampling calorimeter using **gaseous** detectors (RPC) but also tested MicroMegas
- <u>SCREAM collaboration</u>: a sampling calorimeter combining RPWELL and resistive MicroMegas

Our plan \rightarrow systematically **compare** three MPGD technologies for hadronic calorimetry: resistive MicroMegas, µRWELL and RPWELL, while also investigating **timing**

HCAL R&D well included in DRD1-WP5 (Calorimetry) and DRD6-WG1 (Sampling Calorimeter)

MPGD-HCAL BIB studies

Simulation: 60 layers of Iron (19mm) + Ar (3mm)

Hit Occupancy:

- BIB containment within the first 20 layers of HCAL
- Probability of a cell to be fired in the first layer :
 - **BIB** : ~ 1 x 10-5
 - \circ **\pi^{\pm} 5 GeV** : ~ 0.2 x 10-5
 - \circ **\pi^{\pm} 20 GeV** : ~ 0.8 x 10-5
- Challenge for low energy pion reconstruction

Arrival time:

- BIB arrival time distribution uniform in the range 7-20 ns;
- signal arrival time peaks at ~ 6ns;
- discrimination possible for t>9/10 ns → <u>achievable</u> with MPGD detectors

MPGD-HCAL Test Beam

R&D effort in collaboration with INFN-RM3, INFN-Fr, INFN-Na, Weizmann and CERN

2 test beam campaigns in 2023 and 2024:

- without absorbers for detector characterization,
- with absorber for shower studies (~1 λ_1).

Number of hits distributions for MC and data at different pion energies ($E_{\pi}=f^{-1}(\langle N_{hir}\rangle)$)

Tracker

Riunione Gr1

MPGD-HCAL future activities

Development of a new cell prototype of ~2λ_i, including 8 20x20cm² chambers plus 4 50x50cm² chambers (2 Micromegas & 2 μRWELL, their production foreseen for beginning of next year):

- Test beam with CRILIN (a Crystal calorImeter with Longitudinal InformatioN) electromagnetic calorimeter and with CALICE.
- Understand the best technology between Micromegas and µRWELL, balancing performances and large area production feasibility & cost.
- Electronics:
 - o so far data collected with APV hybrids; too old, not able to sustain high rate and not supported;
 - preliminary tests with VMM hybrids (ATLAS chip) show good results compatible with what observed with APVs;
 - Interest in FAst TIming Integrated Circuit (FATIC) chip developed by our BARI electronics team.
- (>>2026) Development of 50x100cm² MPGD detectors with and without embedded electronics, starting thinking about cooling

З

Inputs for ESPP

INFN Strategy 6-7 May 2024

Implementation at CERN: a possible roadmap

- 2028-2035
 - FCC is approved:
 - We (already have) convinced the management that the demonstrator is essential
 - We continue on the low power side, at a pace compatible with running HL-LHC and the FCC programme, still aiming at a reasonable facility by 2035.
 - · FCC is further delayed or not clearly approved
 - · We request the full budget for the high-power option
 - We speed up in order to start installation in TT10 by 2033, first beam 2035.

- Next European Strategy Update to get support for the demonstrator
- In all the scenarios (even with a demonstrator at Fermilab), the aim is to have a facility by 2035

Full interest for a TPC with optical readout for beam monitoring

Riunione Gr1

Inputs for ESPP?

MPGD-HCAL is an excellent alternative for a Hadronic Calorimeter

- cost-effectiveness for large area instrumentation
- radiation hardness up to several C/cm²
- rate capability O (MHz/cm²)
- high granularity
- different pad size segmentation, being capable to achieve good space resolution ($O(100\mu m)$) \rightarrow express interest, from colleagues involved into the MAIA experiment concept at MuCol, for a MPGD-HCAL capable to also perform muon tracking
- good timing resolution (O(ns))
- easy to cover large areas
- MPGDs:
 - both Micromegas and µRWELL are ones among the main 0 MPGD technologies for detectors at future colliders. thanks to their versatility

Strong synergies with other FCC R&Ds currently 0 on-going

INFN Strategy 6-7 May 2024

OFCC (INFN

Preshower and Muon detectors

Based on µ-RWELL technology

Preshower:

- · High resolution after the magnet to improve π^{\pm}/e^{\pm} and 2γ separation
- Space Resolution < 100 µm
- pitch = 0.4 mm
- 1.3 million channels

Muon detector:

- Identify muons and search for LLPs
- Space resolution < 400 µm
- pitch = 1.2 mm
- 5 million channels

New u-RWELL prototypes with 40 cm long strips

Ongoing development Mass production

> channels/cost 50x50 cm² 2D tiles to

Optimization of FEE

RD FCC

Resistive Micromegas in RD FCC

Napoli:

M. Alviggi, R. De Asmundis, M. Della Pietra, C. Di Donato, P. lengo, G. Sekhniaidze

Roma3:

M. Biglietti, R. Di Nardo, M. Iodice, R. Orlandini, F. Petrucci

Incontro con i Referee 26 Luglio 2024

S

Synergies and common effort

Bari team: 15 people for 3.6 FTE for 2025 (starting from 2.3 FTE of 2024)

16