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The particle accelerator roadmap

Ability to generate new particles via
high-energy collisions
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Technological innovation is needed to keep up
with the upcoming challenges!
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Image source: “Particle beams behind
physics discoveries" (Physics Today)



Trends and challenges of frontier accelerators
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Machine learning in particle accelerators

Number of Papers per Year (arxiv physics.acc-ph)
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Task Goal Methods/Concepts Examples!

Detection Detect outliers and anomalies e Anomaly detection e C(Collimator alignment
in accelerator signals for interlock e Time series forecasting e Optics corrections
prediction, data cleaning e C(Clustering e SRF quench detection

Prediction Predict the beam properties based e Virtual diagnostics e Beam energy prediction
on accelerator parameters e Surrogate models e Accelerator design

e Active learning e Phase space reconstruction

Optimization Achieve desired beam properties e Numerical optimizers e Injection efficiency

or states by tuning accelerator parameters e Bayesian optimization e Radiation intensity
e Genetic algorithm
Control Control the state of the beam in real time e Reinforcement learning e Trajectory steering

in a dynamically changing environment e Bayesian optimization e Instability control
e Extremum Seeking

I non-exhaustive
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ML in Accelerators Community and Roadmap

Yearly community meetings called MaLAPA
(Machine LeArning for Particle Accelerators)

Strategy

= Define control system needs for LLMs, agents, robotics April 2025, 5th edition, CERN
= Create a central, forward-looking strategy with ethics and safety

» Productionise and demonstrate existing ML/AI tools
= Collect impact metrics and success stories

MaLAPA Community Actions

» Share software, datasets, and tutorials via the MaLAPA repo
= Promote joint development over siloed tools https://indico.cern.ch/event/1382428/
= Establish test problems to benchmark ML methods httos://aithub.com/MALAPA-Collab
= Join the MaLAPA Discord for year-round collaboration R
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ML trends In particle accelerators

MLOps Challenges
= No common MLOps framework in the community yet

= Entire ML lifecycle needs better support LLMs and Agentic
= Start with human-in-the-loop systems; aim for higher autonomy Interfaces
= Need for tutorials and success case studies = Serve as operator interfaces

= Parse logs, discover

correlations

Digital Twin Framework = Act as collaborative agents

= Virtual accelerator: synchronized, predictive, actionable. during design

= Supports: anomaly detection, optimization, safe = Vision: 'LLM-based expert
experimentation. pools' for collective knowledge

= Needs: and feedback

= Shared modelling libraries

= [nterfaces for integration with control systems
= Monitoring and update pipelines

» Community standardization efforts
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ML trends In particle accelerators

Tuning and control

= Bayesian optimisation
= Reinforcement learning

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 084801 (2024)

Bayesian optimization algorithms for accelerator physics

Ryan Roussel ,"" Auralee L. Edelen,' Tobias Boltz®," Dylan Ke,nne,dy,l Zhe Zhang !
Fuhao J1 ,1 Xiaobiao Huang ! Daniel Ratner ,1 Andrea Santamaria Garcia®,”> Chenran Xu ,2
Jan Kaiser ,3 Angel Ferran Pousa ,3 Annika Eichler ,3'4 Jannis O. Li.ibsen,4
Natalie M. Isenberg .’ Yuan Gao®,” Nikita Kuklev,’ Jose Martinez,” Brahim Mustap»ha.,6
Verena Kain®,’ Christopher Mayes,8 Weijian Lin ;) Simone Maria Liuzzo®,"

Jason St. John ,“ Matthew J. V. Streeter ,12 Remi Lehe ,13 and Willie Ne:isx,\ra:nger14

https://doi.ora/10.1103/PhysRevAccelBeams.27.084801
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A vision for future accelerators, driven by ML

Autonomous Continuous What is the path to true
eration £ m deli
operation £, beam delivery autonomous accelerators?
Faster start-up = & Failure &interlock prediction P .
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S
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tor set E and safe control)
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2 - . - T
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Why RL for particle accelerators?

—— RLO (real world)
—-== RLO (simulation)
. . . —— BO (real world)
Reinforcement learning can: T e e e g s
r === Nelder-Mead simplex (simulation)
i —== Random search (simulation)
—-== ES (simulation)

= Adapt dynamically to changing
environments

= Scale better to high-dimensional
problems than other methods
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= Perform closed-loop control in real time

R e

1 1 1

= Converge faster than any other 00 120 140

methods after training

Jan Kaiser, Sci.Rep. 14 (2024) 1, 15733

RL is a promising and powerful framework for adaptive, goal-
directed behaviour in complex environments
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SUPERVISED UNSUPERVISED
LEARNING LEARNING

Classification, prediction, forecasting Segmentation of data
computer learns by example computer learns without prior information about the data
¢ %0 Spam detection MACHINE 5o55] Medical diagnosis

Weather forecasting

0%% :
© ©5 Housing prices prediction LEARNING oo r‘ Fraud (anomaly) detection
0®

Stock k dicti Market segmentation
LelehS il Gl e Pattern recognition

v

REINFORCEMENT Self-driving cars
LEARN'NG a Make financial trades

Y,_ Gaming (AlphaGo)

Real-time decisions | Robotics manipulation
computer learns through trial and error
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Reinforcement learning &g

More than machine learning

Psychology (classical conditioning)
BEHAVIOUR Neurosc_ience (reward system)
LEARNING 7 Economlc_s (game th_eory)

Mathematics (operations research)

Engineering (optimal control, planning)

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari)
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Reinforcement learning

What we understand today as RL (established in
Andrew Barto and the 1980s) inherits concepts from:

Richard Sutton Receive
AM. Turing Award

o Trial-and-error learning
Behavioural basis &

Learning emerges through repeated interaction,
reward feedback, and adaptation

o Optimal control
Mathematical framework [0
Markov decision processes (MDPs), Markov
property, Bellman equation, partially
observable MDPs (POMDRPs), value function,

The scientists received computing’s highest policy function, dynamic programming
honor for developing the theoretical
foundations of reinforcement learning, = .
o Temporal difference learning
a key method for many types of AL e
e Adaptability and scalability
Quanta Magazine Enables prediction and learning from partial experiences

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari) 12



Control the plasma in a tokamak

fusion reactor

https://arxiv.org/abs/1707.02286

So, what can RL do in practice? &)

Modern RL = deep RL, which allows sequential decision making in continuous and infinite
environments thanks to function approximation with deep neural networks.

https://www.deepmind.com/publications/playi

ng-atari-with-deep-reinforcement-learning

a. Player Hero b. Allied Hero  c. Allied Team  d. Enemy Team

"~ ¢ EnemyCreep

’ ', 9‘ f. Enemy Heroes
. i g Allied Creeps
gz &8

k. Fog of War

h. Modifiers

i. Items

I. Allied Tower

j. Abilities

https://openai.com/index/openai-five/
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RL in a nutshell

I Action a; & v
4

Agent Environment
&
TA Reward r; P Te |
State s, @ L Se4

An agent (algorithm) learns through trial-and-error
by interacting with a dynamic environment

) Reward
Action space
! 'V P function

5, c/l, :P} :R’ Stochastic decision making is
& AT %)

modelled by Markov decision

o ) processes (MDPs), a 5-tuple
State space Transition  Discount

probability factor

8
Agent g

1. Executes action a; free-will

2. Receives observation s; perception

3. Receives scalar reward r; motivation

&

Reward
Scalar feedback signal r; that indicates
how well the agent is doing at step ¢

Cumulative G,(1) =

k
r 1
reward (return) Y Tk velOD

k=0

& & &

Goal

Maximisation of cumulative reward G;

through selected actions

Simple concept from which intelligent
behaviour emerges

"Reward is enough" by Silver et al. (2021)
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RL in a nutshell How does the agent “learn”?

What behaviours perform well in this environment? T:d > A
/ Policy: agent's behaviour function (how it picks its actions) m(s) = a
) n(als) = P[a|s]
‘©Q©F
Estimate the utility of taking actions in particular ;
states of the environment (evaluation of the policy) Ge :
Value function: how good each state and/or action are V% " are an estimation of
: : : where the return distribution
V™= state-value function ™ = action-value function i B
> Prediction: evaluate the future given a policy * = arg max E,[G,]
T

» Control: optimise the future (find the best policy)

where * is the optimal policy

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari) 15



RL in a nutshell How does the agent “learn”?

At every time step t: Types of learning &
Online: data is actively collected
1. The agent is in state s, during training
2. The agent selects an action a, ~ (als) Offline: learns from a fixed

: L _ _ dataset (supervised learning)
This action is chosen based on the agent’s current policy m, which may

prioritise actions that maximise expected future reward, e.g.: _ _
Simulation-based: training in a

a, = arg max Q™ (s,, a) virtual or simulated environment

a Experiment-based: direct
3. The environment returns: interaction with a real-world system
= Next state s;,4
* Rewardr, On-policy: policy is updated from
4. The agent learns from the experience (s;, a;, ¢, S¢+1) data collected by the current

: ' f th I
Value-based methods: update value estimates (assess value of action) version otthe policy

Off-policy: can learn from data

Policy-based methods: directly improve the policy (how to act) senereies by & diRaE sslioy

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari) 16



Main challenges of RL deployment

Policy and value functions are approximated by

deep neural networks (DNNs)

0

Generalisation capabilities
-> quantity and quality of data

No real convergence guarantees

Training instability due to:
» Bootstrapped value targets

» Function approximation bias (net. architecture,
weight initialization, training dynamics)

= Hyperparameter sensitivity (high variance in
performance across random seeds)

max J(1my) = max Er,[G:] 0 « 6+aV](my)le

Online Training
Model-free or model-based algorithms
Challenge 1 Challenge 2 Challenge 3
Sample efficiency Partial observability Safety

: Simulation-based : Experiment-based
3 Sufficient and varied : Task is adequately :
enough data exists from : : constrained and learnable :

: computationally accurate : . (lowdimensions, informative :

and tractable models i observations, reward shaping)
Robust policy training to ‘ Careful algorithm design
bridge sim2real gap l Fine hyperparamer tuning

Validation Challenge 3 Challenge 4

In the real accelerator Safety Real-time inference
Conventional control : : Ultra-fast control
: 1-100 Hz action > 10 kHz action

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari) 17



o Sample efficiency A
Challenge 1: sample efficiency  rr.ining cost 4

Sample efficiency: number of interactions with the environment required
to achieve a certain level of performance during the decision-making process

X

Simple implementation = Poor sample efficiency
Good for continuous action Large variance if unclipped

Model-free, on-policy

Policy gradient: REINFORCE
Actor-critic: PPO, A2C

Model-free, off-policy, - Sample efficient = Unstable (function appr.)
DQN dimensions

Model-free, off-policy, = Sample efficient = Hard to tune

actor-critic = Good for continuous action = Hyperparameter sensitivity
DDPG. TD3. SAC = Stable =  Qverestimation bias
Model-based RL Very high sample efficiency ATl e UL (] i

to tune, brittle & sensitive

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari)
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Challenge 1: sample efficiency ['°¥ does thisplay

in practice?

Idealised setting =--------=-==-==========—== > Noisy, unpredictable dynamics
simZ2real gap
Training Validation
S : 1-[ > |nthe real accelerator
Simulation-based Need robust policies!
Sufficient and varied
enough data exists from :

computationally accurate Domain randomization: train on
and tractable models '

................................................... “perturbed” environments

Diff. simullfatiogp(gheeta/h), ?/;/N Meta-RL: learn an adaptable policy that can
surrogates, Elassicelc quickly specialize with minimal fine tuning

~10310°% interactions More robust and sample efficient in validation (real machine)
but requires more samples (simulation)
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Challenge 1: sample efficiency [ ° 7" P

Beam steering task at AWAKE beamline
10 H dipoles, 10 V dipoles, 10 BPMs - ideal trajectory

Returns

Comparing different adapting approaches

7~

—— Meta trained on the simulation
Classical training with only central task simulation as prior information.

—— Classical training without prior information

w

I I 1 I I I
50 100 150 200 250 300 350
Batches
Towards few-shot reinforcement learning in particle accelerator control, JACoW IPAC2024 (2024) TUPS60

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari)
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11 How does this play
Robustness & sample efficiency ;" 5>
Beam steering and focusing task at ARES linear accelerator 1 1 1 -
3 quadrupoles, 2 correctors - target beam size and position on a screen 4 LI uai. ’(.,
Recovery from sudden change in incoming beam 3

Reinforcement learning (with DR) | Bayesian optimisation

L B B LY L B B B N F -:
[ ! ] r ]
500 |- : . 1,000 .
g 0-—\' = [ ] f% 0:— .
— [ I “ + ]
Qo [ I o r :
% 500 i ] §-1,oooE : ]
s : ! 1 & 2000F | ;
€ 1000f __\__ | 1 < _ | ]
S ; a/ : & -3,000 F ! .
D 1,500 | ! 1 “ : ] ]
: W ] 4,000 f l :

L i |
2000 Bt L e b b L ey L T A PR S S S SR R R R R
0 10 20 30 40 50 60 70 80 0 10 20 3 40 5 60 70 80

=== Incoming beam change — ux T Oy py = oy

Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning, Sci.Rep. 14 (2024) 1, 15733
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Challenge 1: sample efficiency ['°¥ does thisplay

in practice?

Training

Experiment-based = |ow-dimensional action and observation spaces

Task is adequately 5
constrained and learnable : = Dense reward

(low dimensions, informative

g - ", = Very sensitive to hyperparameter choices

= Hard to find dedicated beamtime
Very rare! Only a handful of cases

_ » Safety concerns
FERMI, AWAKE, Linac4, KARA

N. Bruchon “Basic reinforcement learning techniques to control the intensity of a seeded free-electron laser”, Electronics, vol. 9, no. 5, 2020

S. Hirlaender “Model-free and Bayesian ensembling model-based deep reinforcement learning for particle accelerator control demonstrated on the FERMI FEL”,

arXiv:2012.09737, 2022.
V. Kain “Sample-efficient reinforcement learning for CERN accelerator control’, Phys. Rev. Accel. Beams, vol. 23, no. 12, p. 124 801, 2020.

L. Scomparin “Preliminary results on the reinforcement learning-based control of the microbunching instability” IPAC2024-TUPS61
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Challenge 2: partial observability . ... autonomous driving

state of the

Fully observable environments .
agent (belief)

The agent directly observes the true 0. =S¢ = §¢€
state of the environment, which t t t
includes everything relevant observation true state of the
environment S¢ : we know all cars exact
positions, road friction,
weather conditions, efc.
Partially observable environments 0,: pixels from cameras.
The agent receives partial O, = S} + §F GPS signal, lidar?
observations and must create its / what the agent can “sense
own state representation partial, noisy, filtered Sta . estimated positions

and speeds based on past
/ observations

) ) ) , what the agent "believes” the
Stacking recent observations to approximate motion  gnvironment is

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari) 23



Challenge 2: partial observability

Ideal setting

State fully observable

MDP (finite, discrete)
Model known

Value function exact
Optimal policy computable

We can completely solve the control
problem and find the optimal policy "

VS

Real world

State partially observable

POMDRP (infinite, continuous)
Model unknown or learned
Value function approximated
Policy approximated

We just want good-enough policies that are
robust, generalizable, sample-efficient, and safe

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari)



Challenge 2: partial observability

Ideal setting Real world
State fully observable State partially observable

MDP (finite, discrete) POMDRP (infinite, continuous)
Model known VS Model unknown or learned
Value function exact Value function approximated
Optimal policy computable Policy approximated

4 4

Classical dynamic programming Modern RL (deep RL)
= Bellman equations + greedy action. = One sample does not return the true expected
= Policy evaluation, policy value (noisy reward).

improvement, value iteration. = The same action does not always lead to the
= Non-tractable for large state and same next state.
action spaces. = We don’t know the true state (only observed).

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari)
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Challenge 2: partial observability

Ideal setting Real world

State fully observable State partially observable

MDP (finite, discrete) POMDRP (infinite, continuous)
Model known VS Model unknown or learned
Value function exact Value function approximated
Optimal policy computable Policy approximated

Partial observability will always be a challenge in particle accelerator
deployment, but can be mitigated with:

= Frequent and informative observations

= Memory (e.g., recurrent architectures) or a learned model
= Well-structured state representation

= Low-frequency decision making

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari) 26



Challenge 3: safety

Exploration vs exploitation dilemma:

We want to learn the optimal behaviour and for that we need to behave non-
optimally to explore the state-action space.

- Hard safety cannot be ensured in high-dimensional continuous state spaces!
Hard safety in RL, especially during exploration, is an active area of research

Soft safety can be implemented:
=  Shielding Trade-offs between safety,
= Reward shaping optimality, and sample efficiency.

» Uncertainty-aware planning

My recommendation: do experiment-based training only in safe machines (low energy,
electrons) or have an excellent interlock system.
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Challenge 4: real-time inference

Control of the microbunching instability

log (photon flux)

Bursting can be controlled with RF modulations
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Challenge 4: real-time inference Doctoral thesis L. Scomparin

Control of the microbunching instability

KAPTURE-2 HighFlex 2 First real-time experiment-
signal digitization bunch labeling based RL learning on
: - ' ; hardware in accelerators

. 5 . - -
Schottky diode ! s
analog pulse signal — I =
50 GHz - 2 THz - 1
Low-latency high-throughput sampling Custom modular
500 MS/s, 8 channels readout card
Measured latency without fiber, aurora
re-training 2.5 pis protocol 64b/66b

Xilinx Versal
VCK190

I decide action

Low-latency RL
inference platform

0.5 -5 GeV Y Feedbac!( system
B eXxecute action

1104 m Low-level RF amplitude and € 7 @ N~
2.7 MHz rev. freq. 4  phase modulation control serial
every 6 revolutions

1.6 TeraFP
operations/s / \
o

c 1Gb Al engines: feature extraction % . Actor @
] and agent inference - 0 ©
= S ] ethernet 177} o
® .0 ®- igs P o
5% % o Critic CPU/GPU ARM processor: slow-control E .‘:',
Lo |2 > Expected re-train agent ——> : 2
a8 o e . FPGA: data preparation
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g x 58 e o e o Depends on
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Challenge 4: real-time inference

Doctoral thesis L. Scomparin
Control of the microbunching instability .
Decimation (two stages):
Algorithm: vanilla PPO from Stable Baselines3 o Controls timescale agent “sees”
. o Rate of action = decimation x T,
Observation

Last 64 THz signal samples (decimated)
Circular buffer (keeps last 64 samples in memory)

3

o Makes infererence & training easier (smaller networks)

o We decimate 16 x 6 = 96 (take a sample every 96 revolutions)

»We act every 96 x T, ~ 28 kHz ~ 0.25 x Tgno ~ 36 ps

»We use 440 samples per second

T
100

T T
150 200

a4

> BN

0.0 4

0 200

T T
400 600

T T T T T 1
0 5000 10000 15000 20000 25000 30000

Filtering to remove spurious content + decimation

Strategy:
network

1. Agent acts during 2048 steps (samples of decimated signal)

2. Agent stops and is re-trained in a CPU (takes ~2.6 s)
> We train every (2048 x 96) T, = 909 Tgync

Action (voltage value) 3. New weights are sent to Versal board and agent starts again

Interpolated (smoothed) to avoid sharp steps (cavity interlocks)

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari) 30


https://publikationen.bibliothek.kit.edu/1000180745
https://publikationen.bibliothek.kit.edu/1000180745

Challenge 4: real-time inference

Control of the microbunching instability

Episode 0: 0.436 mA Episode 29: 0.413 mA Episode 46: 0.400 mA

E | 1 1 — RL Agent
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|
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o
S
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Cumulative reward (arb)

|
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S
S
T

0 10 20 30 40 50
Training episodes

Doctoral thesis L. Scomparin

Some improvements but
conditions (charge and
instability mode) change too
rapidly for the agent to
properly adapt - needs
memory
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Challenge 4: real-time inference Doctoral thesis L. Scomparin

Same concept applied to a simpler problem

Algorithm: Vanilla PPO from Stable Baselines3

) ] Strategy:
Actor & critic architecture: 8-16-1 _
Reward: metric of the beam position (low as 1. Agent acts during 2048 turns (0.74 ms)
possible) 2. Agent stops and is re-trained in a CPU (~2.6 s)
Observation: last 8 BPM samples 3. New weights are sent to Versal board and agent starts again
le6 1e6
—— Untrained agent > —— Greedy agent
—— 15 episodes 304 — FIR filter
3 - \ —— 30 episodes \
. —— 45 episod
) external kick 6o SE::Zd: 3 2.5 1 external kick
% N —— Greedy agent %‘ 204
;',‘ Damping improves with experience: 2 Achieves (sometimes
= the system is learning! 2 157 surpassing) performance
o = of FIR filter control
2 17 g 107 (commercial solution)
S 5
S £ 05
2 2
0+ 0.0 4
-0.5
0 500 1000 1500 2000 0 500 1000 1500 2000

Turns Turns

Dr. Andrea Santamaria Garcia — Machine learning in accelerator physics (EUCAIFCon 2025, Cagliari) 32


https://publikationen.bibliothek.kit.edu/1000180745
https://publikationen.bibliothek.kit.edu/1000180745

In particle

Main challenges of RL deployment _. ...

Online Training
Model-free or model-based algorithms
Challenge 1 Challenge 2 Challenge 3
Sample efficiency Partial observability Safety

: Simulation-based : Experiment-based :
: Sufficient and varied : Task is adequately
: enough data exists from : constrained and learnable :

: computationally accurate : : (low dimensions, informative :

and tractable models observations, reward shaping)
Robust policy training to l Careful algorithm design
bridge sim2real gap l Fine hyperparamer tuning

P

Validation Challenge 3 Challenge 4
In the real accelerator Safety Real-time inference

: Conventionalcontrol ;| :  Ultra-fast control
: 1-100 Hz action > 10 kHz action

RL is a promising and powerful
framework for adaptive, goal-
directed behaviour in complex

environments...

...that requires careful design!

-
Can it be an intelligent 0.0
accelerator co-pilot? w
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Future directions

Lattice-agnostic RL

BN Quad N Corr [IEEE Screen

Used during training, with
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&, = B E E E BN NN UEEEE EEEEEETSR H s B B R ER training Samples
\_

0.0 0.5 10 1.5 20
C. Xu et al, IPAC23-THPL 029 Position [m]

\r
Py
<
&,
._l
‘:-
—
A

Multi agent RL, hierarchical RL, explainable RL, more model-based RL
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The Reinforcement Learning for E’E%E]

Autonomous Accelerators Collaboration RL4AA 'E',";;_rﬁ

Join our Discord

Yearly targeted workshops

Github: https://github.com/RL4AA

=z | 4 RLAAAT25 Discord: https://discord.gg/rudtJaeW

WORKSHOP

: | ‘ - 2-4 April 2025 “ Website: https.//r|4aa.glthu b.IO/
JOIN NOW! DESY (Hamburg, Germany) [Saas)
Youtube: https://www.voutube.com/@RL4AACollaboration

Paper- DOI:10.18429/JACoW-IPAC2024-TUPS62

Annika Eichler, Christian Contreras, Christian Hespe, Simon
Hirlaender, Jan Kaiser, Sabrina Pochaba, Borja Rodriguez
Mateos, Andrea Santamaria Garcia, Chenran Xu

RL4AA’25 at DESY

Next year RL4AAA'26 workshop:
University of Liverpool (25t — 27" April 2026)
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Cheetah: differentiable beam dynamics code

Gradient-based tuning /

() Bayesian optimisation prior (b) system identification

Python package for beam dynamics

©
simulations based on PyTorch E: 5
83 ¥
290 2 =S
2 SS9
PR e - 8 ‘§ (&)}
pip install cheetah-accelerator Model 8
Input variable ] Actuator / unknown variable ”
Ultra-fast compute: Cheetah can run order of
magnitude faster than some other codes.
(c) Reinforcement learning (d) Integrate module neural network surrogates

Differentiability: supports automatic
Agent

differentiation for all its computations. O R[..] = ¥r R[.,] z
Full GPU support and integrates seamlessly ﬁ E

with ML models built in PyTorch.

\A 4

Physical Surrogate wrapped Physical
= in Cheetah
Environment
htt S // |th u b co m/d esy-m IICh eeta h J. Kaiser et al. Bridging the gap between machine learning and particle accelerator physics

with high-speed, differentiable simulations. 10.1103/PhysRevAccelBeams.27.054601
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The Cheetah collaboration

Argonne &
Y
o K

NATIONAL LABORATORY
Jan Kaiser Christian Hespe Chenran Xu Grégoire Charleux Axel Huebl

UMIVERSITY OF
I LIVERPOOL
r e Cockrch e
Annika Eichler A. Santamaria Garcia Remilehe

THE UNMIVERSITY OF g'! Aﬂ
W/ CHICAGO Ohai™\o

J. P. Gonzalez-Aguilera Ryan Roussel DanielRatner Auralee Edelen Jenny Morgan Zihan Zhu
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Thank you for
your attention!

What questions do you
have for me?

Some of our research:

= hitps://doi.ora/10.1038/s41598-024-66263-y Dr. Andrea Santamaria Garcia

Lecturer at University of Liverpool
Cockecroft Institute

= https://doi.org/10.1103/PhysRevAccelBeams.27.054601
= https://arxiv.org/abs/2409.16177

= https://doi.org/10.1007/978-3-031-65993-5_21 ansantam@liverpol.ac.uk

= https://meow.elettra.eu/81/doi/jacow-ipac25-thyd1/index.html https://www.linkedin.com/in/ansantam/
https://github.com/ansantam
https://instagram.com/ansantam

Intro to RL talk: https://doi.org/10.5281/zenodo.12649046
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