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The particle accelerator roadmap 
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Technological innovation is needed to keep up 

with the upcoming challenges!
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Energy frontier Photon science



Dr. Andrea Santamaria Garcia – Machine learning in accelerator physics (EuCAIFCon 2025, Cagliari) 3

Trends and challenges of frontier accelerators
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FLS2023-TH3D3

https://inspirehep.net/files/9cd90c200e8835b6d74a1c6a5fbac611
https://inspirehep.net/files/9cd90c200e8835b6d74a1c6a5fbac611
https://inspirehep.net/files/9cd90c200e8835b6d74a1c6a5fbac611
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Machine learning in particle accelerators
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https://github.com/MALAPA-Collab/AccML-LivingReview/tree/main
https://github.com/MALAPA-Collab/AccML-LivingReview/tree/main
https://github.com/MALAPA-Collab/AccML-LivingReview/tree/main
https://github.com/MALAPA-Collab/AccML-LivingReview/tree/main
https://github.com/MALAPA-Collab/AccML-LivingReview/tree/main
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ML in Accelerators Community and Roadmap

Yearly community meetings called MaLAPA 

(Machine LeArning for Particle Accelerators)

MaLAPA Community Actions

▪ Share software, datasets, and tutorials via the MaLAPA repo

▪ Promote joint development over siloed tools

▪ Establish test problems to benchmark ML methods

▪ Join the MaLAPA Discord for year-round collaboration

Strategy

▪ Define control system needs for LLMs, agents, robotics

▪ Create a central, forward-looking strategy with ethics and safety

▪ Productionise and demonstrate existing ML/AI tools

▪ Collect impact metrics and success stories

https://indico.cern.ch/event/1382428/

April 2025, 5th edition, CERN

https://github.com/MALAPA-Collab

https://indico.cern.ch/event/1382428/
https://github.com/MALAPA-Collab
https://github.com/MALAPA-Collab
https://github.com/MALAPA-Collab
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Digital Twin Framework

▪ Virtual accelerator: synchronized, predictive, actionable.

▪ Supports: anomaly detection, optimization, safe 

experimentation.

▪ Needs:

▪ Shared modelling libraries
▪ Interfaces for integration with control systems

▪ Monitoring and update pipelines

▪ Community standardization efforts

MLOps Challenges

▪ No common MLOps framework in the community yet

▪ Entire ML lifecycle needs better support

▪ Start with human-in-the-loop systems; aim for higher autonomy

▪ Need for tutorials and success case studies

ML trends in particle accelerators

LLMs and Agentic 

Interfaces

▪ Serve as operator interfaces

▪ Parse logs, discover 

correlations

▪ Act as collaborative agents 

during design

▪ Vision: 'LLM-based expert 

pools' for collective knowledge 

and feedback
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ML trends in particle accelerators

Tuning and control

▪ Bayesian optimisation

▪ Reinforcement learning

https://doi.org/10.1103/PhysRevAccelBeams.27.084801

https://doi.org/10.1103/PhysRevAccelBeams.27.084801
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A vision for future accelerators, driven by ML

What is the path to true 

autonomous accelerators? 

(with continuous, robust, 

and safe control)

FLS2023-TH3D3

Maybe reinforcement learning

Jan Kaiser, Sci.Rep. 14 (2024) 1, 15733

https://inspirehep.net/files/9cd90c200e8835b6d74a1c6a5fbac611
https://inspirehep.net/files/9cd90c200e8835b6d74a1c6a5fbac611
https://inspirehep.net/files/9cd90c200e8835b6d74a1c6a5fbac611
https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
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Why RL for particle accelerators?

9

RL is a promising and powerful framework for adaptive, goal-

directed behaviour in complex environments

Reinforcement learning can:

▪ Adapt dynamically to changing 

environments

▪ Scale better to high-dimensional 

problems than other methods

▪ Consider delayed consequences

▪ Perform closed-loop control in real time

▪ Converge faster than any other 

methods after training
Jan Kaiser, Sci.Rep. 14 (2024) 1, 15733

https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
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Reinforcement learning  
More than machine learning

BEHAVIOUR
LEARNING

Psychology (classical conditioning)

Neuroscience (reward system)

Economics (game theory)

Mathematics (operations research)

Engineering (optimal control, planning)

11
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Reinforcement learning  
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What we understand today as RL (established in 

the 1980s) inherits concepts from:

o Trial-and-error learning
Behavioural basis 

Learning emerges through repeated interaction, 
reward feedback, and adaptation

o Optimal control
Mathematical framework 

Markov decision processes (MDPs), Markov 
property, Bellman equation, partially 

observable MDPs (POMDPs), value function, 

policy function, dynamic programming

o Temporal difference learning 
Adaptability and scalability

Enables prediction and learning from partial experiencesQuanta Magazine
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So, what can RL do in practice?

https://www.deepmind.com/publications/playi

ng-atari-with-deep-reinforcement-learning
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Modern RL = deep RL, which allows sequential decision making in continuous and infinite 

environments thanks to function approximation with deep neural networks.
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https://openai.com/index/solving-rubiks-cube/

https://openai.com/index/openai-five/

https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://arxiv.org/abs/1707.02286
https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control
https://www.deepmind.com/blog/accelerating-fusion-science-through-learned-plasma-control
https://openai.com/index/solving-rubiks-cube/
https://openai.com/index/solving-rubiks-cube/
https://openai.com/index/solving-rubiks-cube/
https://openai.com/index/solving-rubiks-cube/
https://openai.com/index/solving-rubiks-cube/
https://openai.com/index/openai-five/
https://openai.com/index/openai-five/
https://openai.com/index/openai-five/
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RL in a nutshell  
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An agent (algorithm) learns through trial-and-error 

by interacting with a dynamic environment

1. Executes action 𝒂𝒕 

2. Receives observation 𝒔𝒕 

3. Receives scalar reward 𝒓𝒕

Scalar feedback signal 𝒓𝒕 that indicates 
how well the agent is doing at step 𝒕

Maximisation of cumulative reward 𝒢𝑡 

through selected actions

perception

motivation

free-will

𝓖𝒕(𝝉) = ෍

𝒌=𝟎

∞

𝜸𝒌 𝒓𝒕+𝒌 𝜸 ∈ 𝟎, 𝟏
Cumulative 

reward (return)

(𝒮, 𝒜, 𝒫, ℛ, 𝛾)
Stochastic decision making is 

modelled by Markov decision 

processes (MDPs), a 5-tuple
State space

Action space

Transition 

probability

Reward 

function

Discount 

factor

Simple concept from which intelligent 

behaviour emerges

"Reward is enough" by Silver et al. (2021)

Agent    

Reward

Goal 

https://www.sciencedirect.com/science/article/pii/S0004370221000862
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RL in a nutshell 

15

How does the agent “learn”?

➢ Prediction: evaluate the future given a policy

➢ Control: optimise the future (find the best policy)

What behaviours perform well in this environment?

Policy: agent’s behaviour function (how it picks its actions)

Estimate the utility of taking actions in particular 

states of the environment (evaluation of the policy)

Value function: how good each state and/or action are

𝜋 ∶ 𝒮 → 𝒜

𝜋 𝑠 = 𝑎

𝜋 𝑎 𝑠 = ℙ[𝑎|𝑠]

𝒢𝑡

𝒱𝜋, 𝒬𝜋 are an estimation of 

where the return distribution 
is centered𝒱𝜋= state-value function 𝒬𝜋 = action-value function

𝝅∗ = 𝐚𝐫𝐠 𝐦𝐚𝐱 𝔼𝝅[𝓖𝒕]
𝝅

where 𝜋∗ is the optimal policy 
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RL in a nutshell 
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How does the agent “learn”?

1. The agent is in state 𝒔𝒕

2. The agent selects an action 𝒂𝒕 ~ 𝝅 𝒂 𝒔

This action is chosen based on the agent’s current policy 𝜋, which may 

prioritise actions that maximise expected future reward, e.g.:

𝑎𝑡 = arg max
𝑎

𝒬𝜋(𝑠𝑡 , 𝑎)

3. The environment returns:
▪ Next state 𝒔𝒕+𝟏 
▪ Reward 𝒓𝒕 

4. The agent learns from the experience (𝒔𝒕, 𝒂𝒕,  𝒓𝒕 , 𝒔𝐭+𝟏)

Value-based methods: update value estimates (assess value of action)

Policy-based methods: directly improve the policy (how to act)

Types of learning

Simulation-based: training in a 

virtual or simulated environment

Experiment-based: direct 

interaction with a real-world system

Online: data is actively collected 

during training

Offline: learns from a fixed 

dataset (supervised learning)

On-policy: policy is updated from 

data collected by the current 

version of the policy

Off-policy: can learn from data 

generated by a different policy

At every time step 𝒕:



Dr. Andrea Santamaria Garcia – Machine learning in accelerator physics (EuCAIFCon 2025, Cagliari) 17

Main challenges of RL deployment
Policy and value functions are approximated by 

deep neural networks (DNNs) 

Generalisation capabilities

→ quantity and quality of data

No real convergence guarantees

Training instability due to:

▪ Bootstrapped value targets

▪ Function approximation bias (net. architecture, 

weight initialization, training dynamics)

▪ Hyperparameter sensitivity (high variance in 

performance across random seeds)

𝜃 ← 𝜃 + α∇𝐽 𝜋𝜃 |𝜃max
𝜃

 𝐽 𝜋𝜃 = max
𝜃

 𝔼𝜋𝜃
[𝒢𝑡]
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Challenge 1: sample efficiency
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Sample efficiency

Training cost

Sample efficiency: number of interactions with the environment required 

to achieve a certain level of performance during the decision-making process

Model-free, on-policy
Policy gradient: REINFORCE

Actor-critic: PPO, A2C

Model-free, off-policy, 

value based
DQN

Model-free, off-policy, 

actor-critic
DDPG, TD3, SAC

Model-based RL

▪ Simple implementation

▪ Good for continuous action

▪ Poor sample efficiency

▪ Large variance if unclipped

▪ Sample efficient

▪ Efficient in discrete envs

▪ Sample efficient

▪ Good for continuous action

▪ Stable

Very high sample efficiency

▪ Unstable (function appr.)

▪ Limited to discrete or low-

dimensions

▪ Hard to tune

▪ Hyperparameter sensitivity

▪ Overestimation bias

Model is hard to train, complex 

to tune, brittle & sensitive
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Challenge 1: sample efficiency
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Simulation-based

Sufficient and varied 

enough data exists  from 

computationally accurate 

and tractable models

Training Validation
In the real acceleratorπ

Diff. simulations (Cheetah), DNN 

surrogates, GPU-accelerated 

Need robust policies!

Domain randomization: train on 

“perturbed” environments

Meta-RL: learn an adaptable policy that can 

quickly specialize with minimal fine tuning

sim2real gap

More robust and sample efficient in validation (real machine) 

but requires more samples (simulation)

How does this play 
in practice?

Idealised setting Noisy, unpredictable dynamics

~103-106 interactions



Dr. Andrea Santamaria Garcia – Machine learning in accelerator physics (EuCAIFCon 2025, Cagliari) 

Challenge 1: sample efficiency

20

How does this play 
in practice?

Towards few-shot reinforcement learning in particle accelerator control, JACoW IPAC2024 (2024) TUPS60

Beam steering task at AWAKE beamline

10 H dipoles, 10 V dipoles, 10 BPMs → ideal trajectory

https://inspirehep.net/files/628e20dc9f3d4213bcdbcdd5e2064153
https://inspirehep.net/files/628e20dc9f3d4213bcdbcdd5e2064153
https://inspirehep.net/files/628e20dc9f3d4213bcdbcdd5e2064153
https://inspirehep.net/files/628e20dc9f3d4213bcdbcdd5e2064153
https://inspirehep.net/files/628e20dc9f3d4213bcdbcdd5e2064153
https://inspirehep.net/files/628e20dc9f3d4213bcdbcdd5e2064153
https://inspirehep.net/files/628e20dc9f3d4213bcdbcdd5e2064153
https://inspirehep.net/files/628e20dc9f3d4213bcdbcdd5e2064153
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Robustness & sample efficiency

21

Reinforcement learning-trained optimisers and Bayesian optimisation for online particle accelerator tuning, Sci.Rep. 14 (2024) 1, 15733

Beam steering and focusing task at ARES linear accelerator

3 quadrupoles, 2 correctors → target beam size and position on a screen

Recovery from sudden change in incoming beam

How does this play 
in practice?

https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2
https://inspirehep.net/files/40b1196af5c6c7870ff2d968bca809a2


Dr. Andrea Santamaria Garcia – Machine learning in accelerator physics (EuCAIFCon 2025, Cagliari) 

Challenge 1: sample efficiency

22

Experiment-based

Task is adequately 

constrained and learnable

Training

Very rare! Only a handful of cases

How does this play 
in practice?

(low dimensions, informative 

observations, reward shaping)

FERMI, AWAKE, Linac4, KARA

▪ ~103 real-world interactions required for training

▪ Low-dimensional action and observation spaces

▪ Dense reward

▪ Very sensitive to hyperparameter choices

▪ Hard to find dedicated beamtime

▪ Safety concerns

N. Bruchon “Basic reinforcement learning techniques to control the intensity of a seeded free-electron laser”, Electronics, vol. 9, no. 5, 2020

S. Hirlaender “Model-free and Bayesian ensembling model-based deep reinforcement learning for particle accelerator control demonstrated on the FERMI FEL”, 

arXiv:2012.09737, 2022.

V. Kain “Sample-efficient reinforcement learning for CERN accelerator control”, Phys. Rev. Accel. Beams, vol. 23, no. 12, p. 124 801, 2020.

L. Scomparin “Preliminary results on the reinforcement learning-based control of the microbunching instability” IPAC2024-TUPS61
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The agent directly observes the true 

state of the environment, which 

includes everything relevant observation

state of the 

agent (belief)

true state of the 

environment

:The agent receives partial 

observations and must create its 

own state representation

𝒪𝑡 = 𝒮𝑡
𝑎 = 𝒮𝑡

𝑒

𝒪𝑡 ≠ 𝒮𝑡
𝑎 ≠ 𝒮𝑡

𝑒

Example: autonomous driving

𝒮𝑡
𝑒  : we know all cars exact 

positions, road friction, 

weather conditions, etc.

𝒪𝑡: pixels from cameras, 

GPS signal, lidar?
what the agent can “sense”

𝒮𝑡
𝑎

: estimated positions 

and speeds based on past 

observations
what the agent ”believes” the 
environment is

partial, noisy, filtered

23

Challenge 2: partial observability

Fully observable environments

Partially observable environments

Stacking recent observations to approximate motion
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Challenge 2: partial observability

24

Ideal setting
State fully observable

▪ MDP (finite, discrete)

▪ Model known

▪ Value function exact

▪ Optimal policy computable

Real world
State partially observable

▪ POMDP (infinite, continuous)

▪ Model unknown or learned

▪ Value function approximated

▪ Policy approximated

We can completely solve the control 

problem and find the optimal policy 𝝅∗ 
We just want good-enough policies that are 

robust, generalizable, sample-efficient, and safe

vs
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Challenge 2: partial observability

25

vs

Classical dynamic programming

▪ Bellman equations + greedy action.

▪ Policy evaluation, policy 

improvement, value iteration.

▪ Non-tractable for large state and 

action spaces.

Modern RL (deep RL)

▪ One sample does not return the true expected 

value (noisy reward).

▪ The same action does not always lead to the 

same next state.

▪ We don’t know the true state (only observed).

Ideal setting
State fully observable

▪ MDP (finite, discrete)

▪ Model known

▪ Value function exact

▪ Optimal policy computable

Real world
State partially observable

▪ POMDP (infinite, continuous)

▪ Model unknown or learned

▪ Value function approximated

▪ Policy approximated
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Challenge 2: partial observability
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vs

▪ Frequent and informative observations

▪ Memory (e.g., recurrent architectures) or a learned model

▪ Well-structured state representation

▪ Low-frequency decision making

Ideal setting
State fully observable

▪ MDP (finite, discrete)

▪ Model known

▪ Value function exact

▪ Optimal policy computable

Real world
State partially observable

▪ POMDP (infinite, continuous)

▪ Model unknown or learned

▪ Value function approximated

▪ Policy approximated

Partial observability will always be a challenge in particle accelerator 

deployment, but can be mitigated with:
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Challenge 3: safety

27

Exploration vs exploitation dilemma:

We want to learn the optimal behaviour and for that we need to behave non-

optimally to explore the state-action space.

→ Hard safety cannot be ensured in high-dimensional continuous state spaces!

Hard safety in RL, especially during exploration, is an active area of research

Trade-offs between safety, 

optimality, and sample efficiency.

My recommendation: do experiment-based training only in safe machines (low energy, 

electrons) or have an excellent interlock system. 

Soft safety can be implemented:

▪ Shielding

▪ Reward shaping

▪ Uncertainty-aware planning
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Challenge 4: real-time inference

28

Control of the microbunching instability

∝ Ne
2

∝ Ne

Short bunch

Increased radiation 
power

Low-𝜶𝒄 optics → MBI

Bursting can be controlled with RF modulations

Tsync = 0.14 ms
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Challenge 4: real-time inference

29

Control of the microbunching instability

Doctoral thesis L. Scomparin

First real-time experiment-

based RL learning on 
hardware in accelerators

https://publikationen.bibliothek.kit.edu/1000180745
https://publikationen.bibliothek.kit.edu/1000180745
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Challenge 4: real-time inference

30

Control of the microbunching instability

Doctoral thesis L. Scomparin

Algorithm: vanilla PPO from Stable Baselines3

Actor 

network

Action (voltage value)
Interpolated (smoothed) to avoid sharp steps (cavity interlocks)

Observation
Last 64 THz signal samples (decimated)

Circular buffer (keeps last 64 samples in memory)

Decimation (two stages):

o Controls timescale agent “sees”

o Rate of action = decimation x Trev 

o Makes infererence & training easier (smaller networks)

o We decimate 16 x 6 = 96 (take a sample every 96 revolutions)

➢We act every 96 x Trev ~ 28 kHz ~ 0.25 x Tsync ~ 36 μs 

➢We use 440 samples per second

Filtering to remove spurious content + decimation

Strategy:

1. Agent acts during 2048 steps (samples of decimated signal)

2. Agent stops and is re-trained in a CPU (takes ~2.6 s)

➢ We train every (2048 x 96) Trev = 509 Tsync 

3. New weights are sent to Versal board and agent starts again

https://publikationen.bibliothek.kit.edu/1000180745
https://publikationen.bibliothek.kit.edu/1000180745
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Challenge 4: real-time inference

31

Control of the microbunching instability

Doctoral thesis L. Scomparin

Some improvements but 

conditions (charge and 

instability mode) change too 

rapidly for the agent to 

properly adapt → needs 

memory

https://publikationen.bibliothek.kit.edu/1000180745
https://publikationen.bibliothek.kit.edu/1000180745
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Challenge 4: real-time inference
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Same concept applied to a simpler problem

Doctoral thesis L. Scomparin

Algorithm: Vanilla PPO from Stable Baselines3

Actor & critic architecture: 8-16-1

Reward: metric of the beam position (low as 

possible)

Observation: last 8 BPM samples

Damping improves with experience: 

the system is learning!

Strategy:

1. Agent acts during 2048 turns (0.74 ms) 

2. Agent stops and is re-trained in a CPU (~2.6 s)

3. New weights are sent to Versal board and agent starts again

Achieves (sometimes 

surpassing) performance 

of FIR filter control 

(commercial solution)

external kick external kick

https://publikationen.bibliothek.kit.edu/1000180745
https://publikationen.bibliothek.kit.edu/1000180745
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Main challenges of RL deployment
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In particle 
accelerators

Can it be an intelligent 
accelerator co-pilot?

RL is a promising and powerful 

framework for adaptive, goal-

directed behaviour in complex 

environments…

…that requires careful design!



Dr. Andrea Santamaria Garcia – Machine learning in accelerator physics (EuCAIFCon 2025, Cagliari) 

Future directions

34

Lattice-agnostic RL

Multi agent RL, hierarchical RL, explainable RL, more model-based RL

C. Xu et al, IPAC23-THPL029

https://www.ipac23.org/preproc/pdf/THPL029.pdf
https://www.ipac23.org/preproc/pdf/THPL029.pdf
https://www.ipac23.org/preproc/pdf/THPL029.pdf
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The Reinforcement Learning for 
Autonomous Accelerators Collaboration
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Github: https://github.com/RL4AA

Discord: https://discord.gg/rudtJaeW

Website: https://rl4aa.github.io/

Youtube: https://www.youtube.com/@RL4AACollaboration

Paper: DOI:10.18429/JACoW-IPAC2024-TUPS62

RL4AA’25 at DESY

Yearly targeted workshops 

Annika Eichler, Christian Contreras, Christian Hespe, Simon 

Hirlaender, Jan Kaiser, Sabrina Pochaba, Borja Rodriguez 
Mateos, Andrea Santamaria Garcia, Chenran Xu

Next year RL4AA’26 workshop: 

University of Liverpool (25th – 27th April 2026)

Join our Discord

https://github.com/RL4AA
https://discord.gg/rudtJaeW
https://rl4aa.github.io/
https://www.youtube.com/@RL4AACollaboration
https://accelconf.web.cern.ch/ipac2024/doi/jacow-ipac2024-tups62/
https://accelconf.web.cern.ch/ipac2024/doi/jacow-ipac2024-tups62/
https://accelconf.web.cern.ch/ipac2024/doi/jacow-ipac2024-tups62/
https://accelconf.web.cern.ch/ipac2024/doi/jacow-ipac2024-tups62/
https://accelconf.web.cern.ch/ipac2024/doi/jacow-ipac2024-tups62/
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Cheetah: differentiable beam dynamics code

36

J. Kaiser et al. Bridging the gap between machine learning and particle accelerator physics 
with high-speed, differentiable simulations. 10.1103/PhysRevAccelBeams.27.054601

https://github.com/desy-ml/cheetah

Python package for beam dynamics

simulations based on PyTorch

Ultra-fast compute: Cheetah can run order of

magnitude faster than some other codes.

Differentiability: supports automatic

differentiation for all its computations.

Full GPU support and integrates seamlessly

with ML models built in PyTorch.

https://doi.org/10.1103/PhysRevAccelBeams.27.054601
https://github.com/desy-ml/cheetah
https://github.com/desy-ml/cheetah
https://github.com/desy-ml/cheetah
https://github.com/desy-ml/cheetah
https://github.com/desy-ml/cheetah
https://github.com/desy-ml/cheetah


Dr. Andrea Santamaria Garcia – Machine learning in accelerator physics (EuCAIFCon 2025, Cagliari) 

The Cheetah collaboration

Jan Kaiser Christian Hespe

Annika Eichler

Chenran Xu

A. Santamaría García

Grégoire Charleux Axel Huebl

Remi Lehe

J. P. Gonzalez-Aguilera Ryan Roussel Daniel Ratner Auralee Edelen Jenny Morgan Zihan Zhu
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ansantam@liverpol.ac.uk

https://www.linkedin.com/in/ansantam/

https://github.com/ansantam

https://instagram.com/ansantam

Dr. Andrea Santamaria Garcia

Thank you for

your attention!
What questions do you

have for me?
Some of our research:

Intro to RL talk: https://doi.org/10.5281/zenodo.12649046

▪ https://doi.org/10.1038/s41598-024-66263-y

▪ https://doi.org/10.1103/PhysRevAccelBeams.27.054601

▪ https://arxiv.org/abs/2409.16177

▪ https://doi.org/10.1007/978-3-031-65993-5_21

▪ https://meow.elettra.eu/81/doi/jacow-ipac25-thyd1/index.html

Lecturer at University of Liverpool

Cockcroft Institute

mailto:ansantam@liverpol.ac.uk
https://www.linkedin.com/in/ansantam/
https://github.com/ansantam
https://github.com/ansantam
https://doi.org/10.5281/zenodo.12649046
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1038/s41598-024-66263-y
https://doi.org/10.1103/PhysRevAccelBeams.27.054601
https://doi.org/10.1103/PhysRevAccelBeams.27.054601
https://arxiv.org/abs/2409.16177
https://arxiv.org/abs/2409.16177
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.1007/978-3-031-65993-5_21
https://doi.org/10.1007/978-3-031-65993-5_21
https://meow.elettra.eu/81/doi/jacow-ipac25-thyd1/index.html
https://meow.elettra.eu/81/doi/jacow-ipac25-thyd1/index.html
https://meow.elettra.eu/81/doi/jacow-ipac25-thyd1/index.html
https://meow.elettra.eu/81/doi/jacow-ipac25-thyd1/index.html
https://meow.elettra.eu/81/doi/jacow-ipac25-thyd1/index.html
https://meow.elettra.eu/81/doi/jacow-ipac25-thyd1/index.html
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