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“Nature is quantum […] 
so if you want to 

simulate it, you need a 
quantum computer”  
- Richard Feynman 

(1982)

Easily said … so how do we do that?

Beginning of a scientific journey that accelerated 
in recent years tremendously….
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Private and Public Sector is placing big bets on Quantum Computing

Significant financial investment 
expected across many sectors

In US, already now higher financial 
investment from private than public sector

All national and international labs have QC programmes  
(Fermilab, BNL, LBNL, DESY, CERN, Singapur, Abu Dhabi, …)
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1 mio physical 
qubits


-> 

1k logical qubits 

by 2029

timescales much 
smaller than 
large-scale 

science projects

Future 

Circular

Collider
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Classical

ML Algorithms

Quantum  
ML Algorithms

1. an adaptable complex system that allows approximating a complicated function

2. the calculation of a loss function used to define the task the method

3. a way to update 1. while minimising the loss function

quantum: annealing

hybrid: classical opti.

ground state 
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Almost all of the 
methods used and 

shown at 
EUCAIFCON 
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Calculating observables in many-body systems 
with Neural Quantum States

[Carleo, Troyer ’17]

• Challenges in solving quantum many-body problems

➡ Exponential growth of Hilber space 
with system size

➡ Computational intractability of 
classical methods

• The promise of machine learning

➡ Efficient representation of complex systems

➡ Advances in optimization and scalability

• Neural Quantum States as a bridge

➡ Combining neural networks with 
variational quantum methods

➡ Alternative approach to Tensor Networks

Universal Approximation Theorem(s)

width → ∞ ⇒ | f* − fW | ∼ width−1

[Cybenk ’89] [Leshno et al ’93] [Hornik ’91]

Univ. Approx. Conjecture(s)

D → ∞ ⇒ | f* − fW | ∼ exp[−D]
[Z. Lu et al, ’17]
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• To calculate the groundstate of a quantum system, choose a variational ansatz that 
approximates the quantum state of the system  and minimize the energy 

computed with respect to the parameters .

ψ⟩ ≈ ψθ⟩
θ

• Rayleigh-Ritz variational principle guarantees convergence to approximation of 
groundstate

Eθ = ⟨ψθ |H |ψθ⟩
⟨ψθ |ψθ⟩

≥ EGS

• In NQS, we approximate the wave function with a neural network

σ1
σ2
σ3

ψ(σ1, σ2, …) ∈ ℂ

ψW⟩ = ∑
σ1,…,σN

(σ1, …, σN) σ1, …, σN⟩

W1
W2
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• Problem is that Hilbert space scales exponentially and selecting the entire basis for  
becomes prohibitive. 

ψ

➡ Monte Carlo sampling of basis states  to approximate 
energy ground state

σ1, …, σN⟩

➡ NN variation and energy optimisation are necessary for each choice of set 
of σ1, …, σN⟩

Example:

     Michael Spannowsky            January 2025                   

Non-local transverse Ising model    H = − V ∑
{i, j}∈ℰ

σz
i σz

j − ∑
i∈𝒩

σx
i

V = 1

[Ngairangbam, MS, Sypchenko ’25]
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Classical data processed 
via quantum algorithms on 

quantum devices
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Popular Quantum Computing paradigms

Type Discrete Gate 
(DG)

Continuous Variable 
(CV)

Quantum Annealer 
(QA)

Computing Digital Digital/Analog Analog

Property Universal (any quantum 
algorithm can be expressed)

Universal

-


GBS non-Universal

Not universal — 

certain quantum systems

Advantage most algorithms and tech 
support

uncountable Hilbert 
(configuration) space

continuous time quantum 
process

How? IBM - Qiskit 

~500 Qubits

Xanadu DWave - LEAP 

~7000 Qubits

What?
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How most quantum algorithms work

• Operator expressed in terms of individual gates

• Often ‘Trotterization’ (Suzuki-Trotter decomposition) needed:

operator acts on  
Hilbert space states

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

h 2|  1i (196)

14

measurement of 
observable   

corresponds to exp. 
value of operator

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

D
Û
E

 
=

h |U | i

h | i
(199)

14

statistical statement 
need to evaluate often

Need to encode Hilbert 
space and operator suitable 

for quantum system

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

D
Û
E

 
=

h |U | i

h | i
(199)

H =
mX

j=1

Hj (200)

eiHt =

0

@
mY

j=1

e�iHjt/r

1

A
r

+O(m2t2/r) (201)

14

For

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)

Û (198)

D
Û
E

 
=

h |U | i

h | i
(199)

H =
mX

j=1

Hj (200)

eiHt =

0

@
mY

j=1

e�iHjt/r

1

A
r

+O(m2t2/r) (201)

14
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|0⟩

|1⟩

|ψ⟩

ϕ

θ

Apply Unitary rotation :U3 |0⟩ U3(θ, ϕ, λ) =
cos( θ

2 ) −eiλ sin( θ
2 )

eiϕ sin( θ
2 ) ei(ϕ+λ) cos( θ

2 )

Measure |0⟩

|1⟩

|0⟩

|1⟩

|ψ⟩ = cos θ
2 |0⟩ + eiϕ sin θ

2 |1⟩ =
cos θ

2

sin θ
2 eiϕ

Prob( |0⟩) = (cos θ
2 )2

Prob( |1⟩) = (eiϕ sin θ
2 )2

Rotation about the Bloch Sphere and state parametrisation

Extending this to a system of  qubits forms a -dimensional Hilbert SpaceN 2N
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Quantum Machine Learning 

with a Variational Quantum Circuit

[Blance, MS ’20]

[Farhi, Neven ’18]

[Schuld et al ’20]

[McClean et al ’16]

U(w)

Linear Unitary 
OperationEncoding step

Measurement with 
respect to  

operator, e.g. σzrealises 
entanglement etc

Ports data into 
quantum state expectation value 

of operator <-> 
many shotsdifference to classical NN - 

expressibility relies on encoding step
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Quantum Machine Learning 

with a Variational Quantum Circuit

state preparation

e.g. angle encoding

n corresponds 
to # features

e�
i
~Ht

'

⇣
e

i
~H1t/ne

i
~H2t/n · · · e

i
~Hkt/n

⌘n
(223)

H · ↵init = ↵inter (224)

C(⇥) = �

X

i

pi F (|�iB0 , ⇢̂B0) (225)

⌦ (226)

� (227)

16

U(w)
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Quantum Machine Learning 

with a Variational Quantum Circuit

3.2. Structure of a Variational Quantum Classifier 75

Figure 3.2: Circuit diagram for our variational quantum classifier
model made of two qubits in each of the two layers.

postprocessing step gives a great deal of flexibility to the user to tackle the problem

how they see fit. Generally, it will include the addition of any bias terms, the

drawing of a classification decision boundary, the calculation of a loss function and

the optimisation procedure.

The bias term b will also be a trainable parameter. Its introduction increases model

flexibility. We can write the output of our model, before drawing a decision boundary,

by combining the expectation value of the model circuit fi(w, x) and the bias term b

f(w, b, x) = fi(w, x) + b . (3.2.9)

A decision boundary is drawn to seperate the value of f(w, b, x) into the two classes.

The binary classification result, cls(w, b, x), is calculated as

cls(w, b, x) =

Y
___]

___[

1 if f(w, b, x) > 0 ,

≠1 else .

(3.2.10)

Following this, the loss function is calculated and the optimisation procedure is

carried out. This will be discussed in Section 3.3.

2-layer Variational Quantum Circuit

3.2. Structure of a Variational Quantum Classifier 73

unitary gate

Ry(◊) =

Q

cca
cos(◊/2) ≠sin(◊/2)

sin(◊/2) cos(◊/2)

R

ddb . (3.2.4)

3.2.2 Model Circuit

Given a prepared state, |xÍ, the model circuit, U(w), maps |xÍ to a vector |ÂÍ =

U(w)|xÍ. In turn, U(w) consists of a series of unitary gates and can be decomposed

as

U(w) = Ulmax(wlmax)...Ul(wl)...U1(w1) , (3.2.5)

where every Ul(wl) is a layer in the circuit, with its corresponding weight parameters,

and lmax is the maximum number of layers. These are constructed from a set of single

and two-qubit gates which will evolve the state |xÍ. The gates include parameters

that will be trained during the optimisation of the network. A single qubit gate can

be written as a 2 ◊ 2 unitary matrix with the form

G(–, —, “, „) = ei„

Q

cca
ei—cos(–) ei“sin(–)

≠e≠i“sin(–) e≠i—cos(–)

R

ddb . (3.2.6)

We can neglect ei„ as it only gives rise to a global phase that has no measurable

e�ect. Thus, the parameters –, —, and “ are all that is needed to parametrise a

single qubit gate.

The circuit we use in our model in shown is Fig. 3.2. This is constructed using a

rotation gate, R, and CNOT1. The rotation gate is a single qubit gate that is applied

1 The controlled-NOT (CNOT) gate is a quantum register that can be used to entangle and
disentangle quantum states. The matrix representation of a CNOT gate is

CNOT =

Q

cca

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

R

ddb .
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model circuit trainable 
parameters

prepared 
state

quantum system which can be parametrised by

| i = ↵|0i + �|1i = cos
✓

2
|0i + ei'sin

✓

2
|1i =

✓
cos ✓2

sin ✓
2e

i�

◆
. (2.2)

The state of Eq. (2.2) can be visualised as a vector on the Bloch sphere. By performing op-

erations on a qubit one rotates the vector on the Bloch sphere. Circuits can be constructed

to act on numerous qubits, where a 2-qubit state can be described as a tensor product of

two 1-qubit states

| i = ↵00|00i + ↵01|01i + ↵10|10i + ↵11|11i . (2.3)

The model circuit is constructed from gates that evolve the input state. The circuit

is based on unitary operations and depends on external parameters which will be adjusted

during training.

Finally, the postprocessing step measures the state. Traditionally, we measure the

output of the first qubit. This step will also include any classical postprocessing we may

wish to include.

2.1 State Preparation

Before applying the model circuit of our classifier, we use a state preparation circuit Sx to

encode the input data into a quantum state. Sx acts on the initial state |�i

x 7! Sx|�i = Sx|0i⌦n = |xi , (2.4)

where |�i = |0i⌦n. The number of qubits n is defined by the number of features in our

dataset.

The parametrisation of the encoding can a↵ect the decision boundaries of the classifier

and can therefore be chosen in a form that suits the problem at hand [44]. Here, we use

the so-called angle encoding

|xi =
nO

i=1

cos(xi)|0i + sin(xi)|1i , (2.5)

where x = (x0, ...xN )T . Practically, this amounts to using the input data, x, as angles in

a unitary quantum gate. We take the state preparation circuit as the unitary gate

Ry(✓) =

 
cos(✓/2) -sin(✓/2)

sin(✓/2) cos(✓/2)

!
. (2.6)

2.2 Model Circuit

Given a prepared state, |xi, the model circuit, U(w), maps |xi to another vector | i =

U(w)|xi. In turn U(w) consists of a series of unitary gates and can be decomposed as

U(w) = Ulmax(wlmax)...Ul(wl)...U1(w1) , (2.7)

where every Ul(wl) is a layer in the circuit, with its corresponding weight parameters, and

lmax is the maximum number of layers. These are constructed from a set of single and

– 5 –

with

e�
i
~Ht

'

⇣
e
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~H1t/ne

i
~H2t/n · · · e

i
~Hkt/n

⌘n
(223)

H · ↵init = ↵inter (224)

C(⇥) = �

X

i

pi F (|�iB0 , ⇢̂B0) (225)

⌦ (226)

� (227)

U1 (228)

U2 (229)

16

e�
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~Ht

'

⇣
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i
~H2t/n · · · e
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C(⇥) = �

X

i
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⌦ (226)

� (227)

U1 (228)

U2 (229)

16

e�
i
~Ht

'

⇣
e

i
~H1t/ne

i
~H2t/n · · · e

i
~Hkt/n

⌘n
(223)

H · ↵init = ↵inter (224)

C(⇥) = �

X

i

pi F (|�iB0 , ⇢̂B0) (225)

⌦ (226)

� (227)

U1 (228)

U2 (229)

R(↵,�, �) (230)

16

Rotation + CNOT -> Entanglement

U(w)
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Expressibility of model and encoding

5.2 Which Functions Do Variational Quantum Models Express? 187

Fig. 5.7 Quantum models as sum of trigonometric functions. If data features are encoded via
gates of the form e−i xi G , quantummodels are linear combinations of functions e−i xiω with frequen-
cies ω ∈ Ω determined by the generator G. Since quantum models have real-valued outputs, these
functions can be expressed as linear combinations of sine and cosine functions cos(ωxi ), sin(ωxi ).
The sketch above shows a quantum model that takes a single feature, and whose model function is
a sum of sine functions of three different frequencies

up with very limited model classes that variational circuits can express, and therefore
learn, even if the variational circuit is arbitrarily deep and wide.

This insight is important for the theoretical study of quantum models, because
it opens up the world of Fourier analysis to quantum machine learning. It also has
important practical implications, for example, that the encoding controls the expres-
sivity of quantum models, or that we have to be mindful of their periodicity when
pre-scaling the data. Finally, it may hint at applications that quantum models might
be particularly suited for.

5.2.1 Quantum Models as Linear Combinations of Periodic
Functions

Wewill first state the main result as a general theorem (based on [13]), and then draw
several conclusions as well as analyse a practical example. For the sake of generality,
we consider circuits that alternate encoding gates and parametrised unitaries

U (x, θ) = WN+1(θ)
N∏

i=1

Si (xi )Wi (θi ). (5.20)

This can be interpreted as a more general version of the circuit shown in Fig.5.2,
where the gates T1, . . . , TN+1 are made trainable.

The feature-encoding gates Si (xi ) have the form

Si (xi ) = e−i xi Gi , i = 1, . . . , N , (5.21)

where we assume without loss of generality that Gi is a diagonal operator
diag(λi

1, . . . ,λ
i
d), where d is the dimension of the Hilbert space. If this is not the

•  Most encodings result in sum of trigonometric functions, 
e.g. angle encoding, time evolution encoding

• Fourier series is universal approximator, but for many encoding strategies 
quantum models are linear combinations of functions composed of few 
frequencies

trigonometric structure from 
data encoding

A, B, C coefficients from 
parametrised circuit W

fθ(x) = ⟨ℳ⟩x,θ = A + B cos(x) − C sin(x)• Data reuploading can increase 
expressivity

• Pendant to activation functions in 
the encoding step. 

• Encoding + W operator give 
functional form
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Quantum Machine Learning 

with a Variational Quantum Circuit

• Entangled state shares information across qubits

74 Chapter 3. Classification Using a Variational Quantum Classifier

to both qubits in our system. This gate is designed to rotate our state based on a

set of learnable parameters w = (–, —, “)

R(–, —, “) = RZ(“)RY (—)RZ(–)

=

Q

cca
e≠i(–+“)cos(—/2) ≠e≠i(–≠“)sin(—/2)

e≠i(–≠“)sin(—/2) ei(–+“)cos(—/2)

R

ddb

(3.2.7)

The angles of Eq. (3.2.7) are a subset of all trainable parameters of the model and

make up the parameters in the weight vector w œ Rn◊3◊l, where n is the number

of qubits and l is the number of layers in our network. This object, w, will contain

some of the parameters that will be learned during training time. While the number

of qubits will mirror the number of features in our dataset, the number of layers in

the network, l, is a hyperparameter we can tune. In the circuit centric design we are

using, the number of qubits is held constant, however, the model could be extended

for a more flexible network design [94].

Each layer in our model contains two CNOT gates - a standard 2-qubit gate in

quantum computing with no learnable parameters. These gates flip the state of

a qubit based on the value of another control bit. Each gate in the layer uses a

di�erent qubit as the control bit.

3.2.3 Measurement and Postprocessing

After applying U(w) to the initial state we need to measure its output. We do this

by applying the Pauli Z operator on the first qubit and taking the expectation value

E(‡z) = È0|Sx(x)†U(w)†ÔU(w)Sx(x)|0Í = fi(w, x) , (3.2.8)

where Ô = ‡z ¢ I¢(n≠1). To obtain an estimate, we run the circuit repeatedly. The

number of repetitions we do is known as the number of shots S.

Classical postprocessing is applied to the expectation value of the circuit before

returning a final classifier output. Like in a classical neural network approach, the

74 Chapter 3. Classification Using a Variational Quantum Classifier
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number of repetitions we do is known as the number of shots S.

Classical postprocessing is applied to the expectation value of the circuit before
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for

• Evaluate expectation value of qubits to construct loss

for supervised S vs B classification one qubit sufficient

3.2. Structure of a Variational Quantum Classifier 75

Figure 3.2: Circuit diagram for our variational quantum classifier
model made of two qubits in each of the two layers.

postprocessing step gives a great deal of flexibility to the user to tackle the problem

how they see fit. Generally, it will include the addition of any bias terms, the

drawing of a classification decision boundary, the calculation of a loss function and

the optimisation procedure.

The bias term b will also be a trainable parameter. Its introduction increases model

flexibility. We can write the output of our model, before drawing a decision boundary,

by combining the expectation value of the model circuit fi(w, x) and the bias term b

f(w, b, x) = fi(w, x) + b . (3.2.9)

A decision boundary is drawn to seperate the value of f(w, b, x) into the two classes.

The binary classification result, cls(w, b, x), is calculated as

cls(w, b, x) =

Y
___]

___[

1 if f(w, b, x) > 0 ,

≠1 else .

(3.2.10)

Following this, the loss function is calculated and the optimisation procedure is

carried out. This will be discussed in Section 3.3.

• Quantum network output:

• Changing operator and loss => VQE, VQT, … (simulate QFT)
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Simple example:

5.1 How to Interpret a Quantum Circuit as a Model 183

〈x | (|ψ(θ)〉〈ψ(θ)|) |x〉 with basis encoding and a measurement M = |ψ(θ)〉〈ψ(θ)|.
Hence, a lot of the insights from one design apply to the other as well.

Unsupervised probabilistic quantum models are also known as Born machines
[11]. The name stems on the one hand from the Born rule that links quantum states
to probabilities, and on the other hand from Boltzmann machines introduced in
Sect. 2.5.2.4.

As a last remark, note that probabilistic quantum models are naturally generative
models (see Sect. 2.2.2) since their implementation on a quantum computer produces
samples. It may in fact not be easy to compute explicit probabilities for a data sample
on paper, or to estimate it on a quantum computer—the number of measurement
samples to estimate probabilities grows in general exponentially with the number of
qubits. This is whywhat we defined as probabilistic quantummodels is often directly
referred to as “generative models” in the quantum machine learning literature.

5.1.3 An Example: Variational Quantum Classifier

As an illustration, we will now interpret a simple single-qubit variational quantum
circuit as a deterministic quantum classifier that maps a scalar input x ∈ R to a scalar
output.Wewill explicitly compute themodel function fθ(x) that the circuit gives rise
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)
. (5.14)

Applying the general rotation defined in Eq. (3.48) to this state yields
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Fig. 5.4 Bloch sphere representation of the simple variational classifier example. The Pauli-X
rotationmaps each data point to the Bloch sphere. A variational rotation Rot(θ1, θ2, θ3), here shown
for three fixed angles, preserves the distance between different data points. A Pauli-Z measurement
defines a decision boundary (white region) between states that would be classified as+1 and those
that would be classified as −1

Fig. 5.5 Left: Plot of fθ(x) from the example in the text with fixed parameters θ1 = θ2 = 1.6.
Right: Plot of fθ(x) fixing the input x = 1.6. As a sum of products of sine and cosine functions,
both plots show the periodic structure of themodel. This property becomes important when studying
the expressivity and trainability of the model in later sections
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Finally, after some tedious calculations or the use of one’s favourite computer algebra
system, the measurement results in the expression

fθ(x) = 〈ψ(x, θ)|σz|ψ(x, θ)〉 = cos(θ2) cos(x) − sin(θ1) sin(θ2) sin(x), (5.15)

which only depends on two of the rotation angles and is—as expected—always real-
valued and limited to the interval [−1, 1] defined by the two eigenvalues −1, 1 of
the Pauli-Z measurement. Any function that the quantum model can learn is char-
acterised by this expression. Most importantly, the “magic” quantum properties of
entanglement, interference and superposition give rise to a rather restricted trigono-
metric model function. Figure5.5 plots the model as a function in x as well as a
function in the parameters θ1, θ2.

We can further process the continuous result of this base model. For example, one
could define a binary classifier as the result of
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y =
{
1 if fθ(x) > 0
−1 else

. (5.16)

Furthermore, one could define the numeric value of the probability of measuring
the qubit in state |0〉or |1〉 itself as themodel output,making it a probabilistic classifier
that we called a “density estimator” in Sect. 2.2.2. The probability is directly related
to the expectation of the Pauli-Z observable,

p(1) = fθ(x)+ 1
2

, p0 = 1 − p1, (5.17)

and can be computed by merely shifting and rescaling the result.

5.1.4 An Example: Variational Generator

The second example demonstrates a simple implementation of an unsupervised prob-
abilistic quantummodel inspired byBoltzmannmachines (see, for example,Ref. [4]).
Consider the bars and stripes dataset of black-and-white 2 × 2 images as shown in
Fig. 5.6. The image can be encoded into the computational basis states of 4 qubits
via basis encoding. For example, a 2 × 2 image with pixels (w,w, b, b) can be rep-
resented by the basis state |0011〉. These four qubits form the “visible layer”. We
use another 3 qubits which are “hidden”, which means that they remain unmeasured.
Hence, there is an injective mapping between computational basis state of the full 7
qubits and the images.

The quantum circuit of the generativemodel starts in state |0000000〉 and applies a
variational unitaryW (θ) on all qubits to get final state |ψ(θ)〉 = W (θ)|0000000〉. (If
we want to implement a quantummodel inspired by a restrictiveBoltzmannmachine
we could impose additional restrictions on W to only entangle hidden and visible
qubits). We then measure the state of the first four qubits using four Pauli-Z mea-
surements. A single measurement results in four eigenvalues in {−1, 1}, one for each
qubit. For example, we may measure the result (1, 1,−1,−1), which corresponds
to the computational basis state |0011〉, and hence to the image (w,w, b, b) from
above. Overall, the variational quantum circuit implements the probabilistic model

p(x) = |〈x |ψ(θ)〉|2, x ∈ {0, 1}⊗4. (5.18)

The hidden qubits add computational power to the model by increasing the degrees
of freedom in W (θ).

For this small example we can easily construct the state which maximises the
uniform probability of observing a bars-or-stripes image. If there were no hidden
units at all, this would be the state

for binary classifier define e.g.

for probabilistic classifier  
(density estimator) 
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rotationmaps each data point to the Bloch sphere. A variational rotation Rot(θ1, θ2, θ3), here shown
for three fixed angles, preserves the distance between different data points. A Pauli-Z measurement
defines a decision boundary (white region) between states that would be classified as+1 and those
that would be classified as −1

Fig. 5.5 Left: Plot of fθ(x) from the example in the text with fixed parameters θ1 = θ2 = 1.6.
Right: Plot of fθ(x) fixing the input x = 1.6. As a sum of products of sine and cosine functions,
both plots show the periodic structure of themodel. This property becomes important when studying
the expressivity and trainability of the model in later sections
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Finally, after some tedious calculations or the use of one’s favourite computer algebra
system, the measurement results in the expression

fθ(x) = 〈ψ(x, θ)|σz|ψ(x, θ)〉 = cos(θ2) cos(x) − sin(θ1) sin(θ2) sin(x), (5.15)

which only depends on two of the rotation angles and is—as expected—always real-
valued and limited to the interval [−1, 1] defined by the two eigenvalues −1, 1 of
the Pauli-Z measurement. Any function that the quantum model can learn is char-
acterised by this expression. Most importantly, the “magic” quantum properties of
entanglement, interference and superposition give rise to a rather restricted trigono-
metric model function. Figure5.5 plots the model as a function in x as well as a
function in the parameters θ1, θ2.

We can further process the continuous result of this base model. For example, one
could define a binary classifier as the result of
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• Hybrid approach (QC to calculate exp. value, CC to optimise U operator)

• Loss function

76 Chapter 3. Classification Using a Variational Quantum Classifier

3.3 Optimisation

As alluded to above, during training we aim to find values of w and b to optimise a

given loss function. This is analogous to a traditional neural network. In both cases,

the methods of optimisation you can perform are similar. For a quantum neural

network and a traditional neural network, we perform a forward pass of the model

and calculate a loss function. Then, we can backpropagate through the network

and update the trainable parameters. This is the equivalent of the third pillar of

machine learning, mentioned in Section 3.1.

During training we have chosen to use mean squared error (MSE) as the loss function1.

The allows us to measure a distance between the truth and our model’s predictions,

represented by the value of the function

L = 1
n

nÿ

i=1

Ë
ytruth

i ≠ f(w, b, xi)
È2

. (3.3.1)

We train our model using vanilla gradient descent and quantum gradient descent [103].

The latter is a quantum optimisation algorithm designed to be performed on a hybrid

network such as the model we have proposed.

3.3.1 Backpropagation

To perform backpropagation for a network with adjustable parameters ◊ = (w, b)

we must compute the gradient ˆ

ˆ◊
f . This is equivalent to computing the change of

the output of the network when varying ◊. The gradient over a quantum circuit

can be calculated using the parameter-shift rules [108,109]. Being able to calculate

gradients for a quantum circuit opens up the possibility of using gradient descent

methods to train our variational quantum circuit. The methodology is identical to

how optimisation and training techniques are performed on classical neural networks.

1As discussed in Chapter 1.1, the binary cross-entropy is a preferred measure for the loss function.
In this case, we find that the choice of BCE or MSE leads to similar results. As a result, we choose
to follow the choice for the loss function of Refs. [95,107]. On testing the di�erence, we find that
either loss function results in a model performance of around 70% accuracy.

label (signal, bkg), supervised learning

• Quantum gradient descent - for fast convergence

[Blance, MS ’20]
Fubiny-Study metric underlies geometric 
structure of VQC parameter space:

3.4. Analysis Setup 79

invariant metric. Similar to how the Fisher Information Matrix is used to promote

the gradient descent method to the natural gradient descent method, the Fubini-

Study metric g (derived and elaborated on in Appendix A) exploits the geometric

structure of the variational quantum classifier’s parameter space to establish the

quantum gradient descent method. Here, the optimisation algorithm reads [103]

◊t+1 = ◊t ≠ ÷g+
OL(◊) , (3.3.5)

where g+ is the pseudo-inverse of the Fubini-Study metric. We implement this using

the Python package PennyLane [114]. This allows us to find the steepest descent in

the parameter space of the quantum states. The approach of Eq. (3.3.5) is designed

to optimise the parameters of the quantum variational circuit only, i.e. the quantum

gates with trainable parameters w = (–, —, “). To perform a full optimisation of

our hybrid model, we need to consider the classical components of our model -

the bias term. Thus, we propose to optimise our weights using quantum gradient

descent (3.3.6) while using vanilla gradient descent for the classical bias term b. By

calculating both gradients at each optimisation step,

◊w

t+1 = ◊w

t ≠ ÷g+
O

wL(◊) ,

◊b

t+1 = ◊b

t ≠ ÷ObL(◊) , (3.3.6)

we can be sure that our entire range of parameters is optimised simultaneously.

3.4 Analysis Setup

Our analysis will be performed using background and signal samples consisting of

pp æ tt̄ events and pp æ Z Õ
æ tt̄ events, respectively. These events are generated

using the same method as found in Chapter 2.2.

The analysis is based exclusively on the transverse momentum of one b-jet, pT,b1 ,

and the event’s missing energy, /ET . We show the distributions of these observables

[Cheng ’10]

[Abbas et al ’20]
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Barren Plateaus
•  Area in loss landscape where gradients are close to zero

• Optimisation is slow and expensive, requiring high accuracy in 
evaluating gradient to avoid random walking

Barren Plateaus often arise if quantum model is overly 
expressive and Hilbert spaces are large

Important task for efficient learning is the choice of model, 
i.e. as expressive as necessary while as small as possible

Individual gradient steps in exponentially large parameter 
and Hilbert space becomes less relevant

Hole on golf course

vs

Valley of mountain
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Optimising the loss landscape

3.3. Optimisation 77

The parameter-shift rules provide the relation

ˆ

ˆ◊
f = r

5
f(◊ + s) ≠ f(◊ ≠ s)

6
, (3.3.2)

where the shift s = fi/4r. The value of r is an arbitrary normalisation factor which

we choose in our implementation to be r = 1/21. From Eq. (3.3.2) we can calculate

gradients over quantum gates by shifting their parameters. As the di�culty of

calculating ˆ

ˆ◊
f has been reduced to simply probing the quantum circuit at di�erent

parameter points, it is now possible to evaluate the gradient fast and e�ciently on

a quantum device.

3.3.2 From Classical to Quantum Gradient Descent

The geometry of the parameter space has a direct impact on the reliability and

e�ciency of an optimisation algorithm [110]. Therefore, a suitable choice of optim-

isation strategy is a key performance factor for a variational quantum circuit. It is an

open question as to what is the best form of parameter space to use and whether the

use of a traditional Euclidean geometry is appropriate for variational models [111].

For our problem, we propose to augment the vanilla gradient descent method, often

used in classical neural networks, with a quantum gradient descent method [103].

In vanilla gradient descent, the network parameters ◊t, at each iteration step t, are

updated to ◊t+1. The goal is to choose the parameters ◊t+1 such that the loss function

L(◊) is minimised. One approach is to update ◊t in the direction of the steepest

decline, ≠OL(◊), weighted by a learning rate ÷

◊t+1 = ◊t ≠ ÷OL(◊). (3.3.3)

However, this optimisation is performed on the geometry of an l2 vector space, which

will influence the performance of our model and how new parameters are found.

1The rule is similar to the traditional finite di�erences (FD) method of finding a derivative.
However, unlike the parameter-shift rules, FD is an approximation. Also, parameter-shift requires
a shift of fi/2 while the shift in a FD setup must be << 1.
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While all parameters are updated with the same step size, the rate at which the loss

function changes for each model parameter can vary by large amounts. By using

this form of gradient descent it is possible to miss the global minimum in the space

of the loss function.

An improvement would be to change the coordinate system to ensure the loss function

changes consistently with each step, for each parameter. Alternatively, one could

find a method that was invariant under re-parametrisation.

One way to address this problem is to use natural gradient descent, which makes

use of the Fisher Information Matrix [112, 113]. This is a classical extension to

vanilla gradient descent method. The parameters of a network (the weights and

biases) exist on a parameter space that has a Riemannian geometry. The Fisher

Information Matrix is the metric that defines this space. Since this metric includes

information on the geometric structure of the Riemannian space of the network

parameters, its inclusion into the gradient descent optimisation leads the network

to learn more e�ectively. In addition, it is invariant under re-parametrisation, and

thus advantageous in finding an e�ective parametrisation.

Algorithmically, natural gradient descent can be written as

◊t+1 = ◊t ≠ ÷F ≠1
OL(◊) , (3.3.4)

where F is the Fisher Information Matrix. In each optimisation step, the paramet-

ers are updated in the direction of steepest descent of the information geometry

rather than the Euclidean geometry. The inclusion of F ≠1 in Eq. (3.3.4) generally

improves the performance of the optimisation algorithm. In most classical deep

neural networks, calculating the inverse of a large matrix becomes prohibitively

expensive because of the computations involved. However, in our hybrid network,

which benefits from a small model size, it follows that the parameter space will also

be small. Thus, our aim is to use a quantum optimisation equivalent of this method

that we can use on variational circuits.

The parameter space of quantum states has a geometry that can be described by an

3.4. Analysis Setup 79

invariant metric. Similar to how the Fisher Information Matrix is used to promote

the gradient descent method to the natural gradient descent method, the Fubini-

Study metric g (derived and elaborated on in Appendix A) exploits the geometric

structure of the variational quantum classifier’s parameter space to establish the

quantum gradient descent method. Here, the optimisation algorithm reads [103]

◊t+1 = ◊t ≠ ÷g+
OL(◊) , (3.3.5)

where g+ is the pseudo-inverse of the Fubini-Study metric. We implement this using

the Python package PennyLane [114]. This allows us to find the steepest descent in

the parameter space of the quantum states. The approach of Eq. (3.3.5) is designed

to optimise the parameters of the quantum variational circuit only, i.e. the quantum

gates with trainable parameters w = (–, —, “). To perform a full optimisation of

our hybrid model, we need to consider the classical components of our model -

the bias term. Thus, we propose to optimise our weights using quantum gradient

descent (3.3.6) while using vanilla gradient descent for the classical bias term b. By

calculating both gradients at each optimisation step,

◊w

t+1 = ◊w

t ≠ ÷g+
O

wL(◊) ,

◊b

t+1 = ◊b

t ≠ ÷ObL(◊) , (3.3.6)

we can be sure that our entire range of parameters is optimised simultaneously.

3.4 Analysis Setup

Our analysis will be performed using background and signal samples consisting of

pp æ tt̄ events and pp æ Z Õ
æ tt̄ events, respectively. These events are generated

using the same method as found in Chapter 2.2.

The analysis is based exclusively on the transverse momentum of one b-jet, pT,b1 ,

and the event’s missing energy, /ET . We show the distributions of these observables
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Û
E

 
=

h |U | i

h | i
(199)

H =
mX

j=1

Hj (200)

eiHt =

0

@
mY

j=1

e�iHjt/r

1

A
r

+O(m2t2/r) (201)

✓1 (202)

✓2 (203)

L(✓1, ✓2) (204)

14

H ! WW ⇤ (193)

5.6 � (194)

U |xi = | 1i (195)

| h 2|  1i |
2 (196)

U (197)
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14Fisher Information Matrix F promotes  
gradient descent to natural gradient descent (Riemannian geometry):

VQC parametersFubiny-Study metric underlies 
geometric structure of VQC 
parameter space (complex 
projective Hilbert Spaces):

quantum gradient descent (QDC):

[Blance, MS ’20][Stokes, Izaac, Killoran, Carleo ’20]
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• Each particle defined by 

3 features (ϕ, η, pT)

• LHC events consist of 

 particles𝒪(500)
• Fat jets have  subjets𝒪(10)

Efficient data encoding 
crucial for realistic data 
analysis on quantum device

HEP Example
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1P1Q Encoding

(pT, η, ϕ) → ψ⟩ = RX(φ)RY(θ) 0⟩

[Bal, Klute, Maier, 
Oughton, Pezone, MS ’25]
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Supervised-Learning with Variational Quantum Circuit

•  VQC supervised learning algorithm

• Train on labelled data,  
signal = boosted top quarks 
bkg = QCD fat jets

U(Θ)
• Use the JetClass dataset first 
introduced by authors of Particle 
Transformer (ParT)

• Train only on 3 basic kinematic 
featrues  with appropraite 
sclaing and normalization

(pT, η, ϕ)

Assign one particle to one qubit
Jet represented by N qubits (N hardest constits)

• Avoid jet bias  
-> flat  in [500,1000] GeVpT
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[Bal, Klute, Maier, 
Oughton, Pezone, MS ’25]

• Input are 10 hardest 
particles of fat jet

• Tiny VQC performs 
comparably to state-of-the-
art Particle Transformer

• Drastically reduced model parameters:  
VQC (32) vs Transformer (2.14 Millions)

better

Results for VQC 
with 1P1Q Encoding
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Unsupervised learning with Quantum Autoencoders

Fidelity

Classical Autoencoder (CAE) Quantum Autoencoder (QAE)

• Freature input is encoded into information bottleneck, i.e. latent space with 
smaller dimension that feature space

• Latent space decoded into reconstructed output, which is then compared with 
input via loss-function (often MSE)  
-> Encoder+Decoder trained together to produce output similar to input

• Quantum AE needs to work with unitary gate operations. 
Thus, need trash states to realise information bottleneck

[Kingma, Welling ’13] [Ngairangbam, MS, 
Takeuchi ’21]
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• Fidelity for QAE 
obtained from 
CMS data

• Very good data - 
simulation agreement

• Signals and bkgs flat in 
pT in [500, 1000] GeV

• Signals: 
H → cc̄, H → gg
W → qq̄, Z → qq̄, t → bqq̄
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Performance QAE for different signals

Comparison with CAE

CAE: 30-20-16-12-6

latent space
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Results: Training size dependence

[Ngairangbam, MS, Takeuchi ’21]
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Figure 6: ROC curve between signal acceptance vs background rejection for Quantum Autoen-
coder(QAE) and Classical Autoencoder(CAE) for various values of mH and di↵erent latent dimen-
sions for a training datasize of 10k samples. The trend across latent dimensions is same for both
QAE and CAE with QAEs performing better in all cases.

5.3 Anomaly detection

We now explore the performance of the autoencoders for a search scenario of for di↵erent

signal strengths.

– 12 –

Much faster training and better performance for Quantum autoencoder

better

In our test cases QAE > CAE for much larger classical networks

[Ngairangbam, MS, Takeuchi ’21]
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As we stated in the introduction, the purpose if this
study is not to recover these classical instanton solutions
for the tunnelling per se, as they are well-known, but
rather to demonstrate that the corresponding field-theory
configuration can be suitably encoded into a quantum
annealer. Once we have established this as a working
principle, one could even envisage testing for the above
behaviour directly. Therefore we will in what follows fo-
cus on using a quantum annealer to recover the simple
c = 0 solution required for the thin-wall regime, as a
proof of principle. We will therefore set ourselves the
task of minimising the corresponding action integral,

S1 =

Z 1

0
d⇢

1

2
�̇
2 + U(�) , (7)

which should yield a solution of the form shown in Fig.2b.

III. ENCODING THE FIELD THEORY

Let us start with the central problem, which is how
to formulate a continuous scalar field theory on quantum
annealers. A quantum annealer is based on the adia-
batic theorem of quantum mechanics, which implies that
a physical system will remain in the ground state if a
given perturbation acts slowly enough, and if there is a
gap between the ground state and the rest of the system’s
energy spectrum [24]. For the annealer to provide a so-
lution to a mathematical problem, e.g. the calculation
of �(⇢) for Eq. 7, we have to find a mapping such that
the expectation value of its Hamiltonian can be identi-
fied with its solution, i.e. that it allows in this example
to identify

�(⇢) () lim
t!0

hHQA(t)i . (8)

The form of the Hamiltonian available to a quantum
annealer is that of a general Ising model, in addition to
a time-dependent transverse field:

HQA(t) =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i +�(t)

X

i

�
X
i ,

(9)

where �
Z
i =

✓
1 0
0 �1

◆
(�Z |0i = |0i, �Z |1i = �|1i) is

the Pauli Z operator, with the subscript indicating which
spin it acts upon, and �

X is its friend pointing in the X-
direction. The gradual decrease of �(t) ! 0 from a large
value should drive the system into the ground state of
the time-independent part of the Hamiltonian, and this
is where we will put the field theory:

H =
X

i

X

j

Jij�
Z
i �

Z
j +

X

i

hi�
Z
i . (10)

It is worth noting that the couplings Jij and hi could
also be adiabatically adjusted in the annealing process,
and this could ultimately be used to adjust the potential

U(�) of a system in the quantum annealer so as to observe
tunnelling, assuming it can be encoded. We will further
split the Hamiltonian into three generic pieces, as

H = H(chain) +H(QFT) +H(BC)
. (11)

Here, H(QFT) is the Hamiltonian corresponding to the
minimisation of the action in Eq. 7 and H(BC) is a Hamil-
tonian that we add to enforce the boundary conditions2.

However our first task is to encode continuous field
values over a continuous domain, with only the discrete
Ising model to hand: this is what H(chain) is for. We begin
by splitting the radius variable ⇢ into M � 1 discrete
values and the field value at the `’th position into N � 1
discrete values:

⇢` = `⌫ = ⌫ . . .M⌫

�(⇢l) = �0 + ↵l⇠ = �0 + ⇠ . . . �0 +N⇠ ,

where in the present context one might for example take
a fiducial value �0 ⇡ �a and ⇠ = 2a/N , with M⌫ =
�⇢. Thus our Ising interaction Jij is an (MN)⇥ (MN)
matrix, while hi is an (NM)-vector.

We must now separate those spins in the annealer that
correspond to fields at different values of `, effectively
splitting Jij and hi into N ⇥ N sub-blocks. To do this
we will utilise the Ising-chain domain wall representation
introduced in [47]. That is for every position ` we add to
the Hamiltonian

H(chain)
` = �⇤

0

@
N�1X

j=1

�
Z
`N+j�

Z
`N+j+1 � �

Z
`N+1 + �

Z
`N+N

1

A .

(12)
As shown in [47], taking ⇤ to be much larger than ev-
ery other energy scale in the overall Hamiltonian, these
terms will constrain the system to remain in the ground
subspace of the Hamiltonian, where exactly one spin po-
sition, ↵` say, is frustrated for each `. These states are
of the form

|11...100...0i` =) �(⇢`) = �0 + ↵`⇠ , (13)

where in the above the discretised field value is repre-
sented by the position ↵` of the frustrated domain wall.
Conversely the field value at the `’th position can be
found by making the measurement

�(⇢`) =
1

2

N�1X

j=1

(�0 + j⇠) h�Z
`N+j+1 � �

Z
`N+ji , (14)

which only receives a contribution from frustrated spin
position with j = ↵`. For later, it is useful to note that
this is equivalent to

�(⇢`) = �0 +
N⇠

2
� ⇠

2

NX

j=1

h�Z
`N+ji . (15)

2 For a classical neural network-based approach to solving Eq. 2
by treating it as an optimisation problem see [46].

3

• Specific Hamiltonian. What does the “anneal” mean?
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induces bit-hopping in the Hamming/Hilbert space

• The idea is to dial this parameter to land in the global 
minimum (i.e. the solution) of some “problem space” 
described by J, h:

initial Hamiltonian

(ground state = superposition of qubits with 0 and 1)

final Hamiltonian

(encodes actual problem)

• Anneal idea: transition from ground state of initial 
Hamiltonian into ground state of problem Hamiltonian

Quantum annealing:  
Non-universal but universally powerful?
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Thermal (classical) and Quantum Annealing are complementary:

• Thermal tunnelling is fast over broad shallow potentials  
(Quantum “tunnelling” is exponentially slow)

• Quantum tunnelling is fast through tall thin potentials  
(Thermal “tunnelling” is exponentially slow - Boltzmann suppression)

• Hybrid approach can be useful depending on solution landscape
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• More specifically - thermal annealing uses Metropolis algorithm: 
accept random        flips with probability
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• Quantum tunnelling in QFT happens with probability 
so by contrast it can be operative for tall barriers if they are thin
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A quantum laboratory for QFT and QML

• Using the spin-chain approach for field theories discussed before, we can 
encode a QFT on a quantum annealer and study its dynamics directly.

• To show that the system is a true and genuine quantum system we 
investigate if the state can tunnel from a meta-stable vacuum into a the 
true vacuum.

of nonperturbative phenomena by studying them exper-
imentally. It may even be possible to observe new phe-
nomena that have not yet been anticipated. For this
study we will of course be limited by the hardware that is
available to us, so the discussion is necessarily restricted
to the simpler field theories that can exhibit instanton-
like behaviour, namely the aforementioned d = 1 scalar
field theory. Nevertheless, within this theory we will be
able to set-up a potential that we then manipulate by
hand so that it develops a non-trivial vacuum structure
that induces tunnelling. We believe this is the first time
that it has been possible to implement instanton pro-
cesses in a freely chosen quantum field theory and observe
such phenomena experimentally.

II. SET-UP FOR FALSE VACUUM DECAY

It will be convenient for several practical reasons to
set-up a physical system on the annealer that recreates
quantum decay in a potential of the form

U(�) =
3

4
tanh2 �� k(t) sech2 (c(�� v)) , (1)

where c, v are constants while k is time-dependent, and
�(t) is the field. Note that � is the dimensionless object
that we will define on the annealer. When required we
will convert it into a dimensionful field ⌘ by defining

� = ⌘/⌘0 , (2)

where ⌘0 is a constant. In the d = 1 field theory there
are of course no space dimensions, and at leading order
it is isomorphic to quantum mechanics (with � playing
the role of x). However the d = 1 field theory formalism
allows for particle creation and is the starting point for
generalisation to higher dimensions, as discussed in the
introduction.

The first term in U provides a potential-well around
� = 0 which in principle allows the system to begin as a
bound-state there. As mentioned this is one of the bene-
fits of annealers over discrete gate systems: in order first
to reach a ground state, a system has to dissipate. The
k-term will then be turned on adiabatically during the
anneal in order to allow tunnelling into the global mini-
mum that forms at � = v. For this study we shall mostly
take c = 1, so that the potential during the tunnelling
period will consist of equally sized potential wells. The
potential is plotted in Fig.1 for k = 1 and various values
of separation parameter v.

This function has several nice properties for our pur-
poses. One is that each individual well has the Pöschl-
Teller �sech2� form, which can be solved. Moreover
the potentials around each minimum decay exponentially.
This makes it possible to “turn on” the global true min-
imum by adjusting k without significantly altering the
profile of the potential around the false minimum (un-
like the more commonly considered case of quartic po-

Figure 1: The double-Pöschl-Teller potential well for different
k and v. The system is initialised around � = 0 and allowed
to decay to the true minimum at � ⇡ v.

tentials). Other useful features of this choice will be dis-
cussed below when they become relevant.

We will begin the system with k = 0, such that it
falls into a Pöschl-Teller ground state. Assuming that
the completion of the potential into a d = 1 field the-
ory ultimately corresponds to the Schrödinger equation,
the ground state (and its excited friends) in such a po-
tential can be determined using factorisation and ladder-
operator methods (see for example [30, 31]). In a theory
where

2m⌘20
~2 U = �(�+ 1) tanh2�, (3)

the bound states are given by Legendre polynomials of
the form Pµ

� (tanh �), and the ground state, P�
� (tanh �),

is given by

 0(�) = N0 sech�� , (4)

where the normalisation constant is

N
2
0 = ⇡� 1

2�(�+ 1/2)/�(�) .

This state, which is our idealised starting state, has en-
ergy

E0 =
~2�
2m⌘20

. (5)

We will not know a priori the value of

�
def
= ~2/2m⌘20

in the effective field theory induced on the annealer, and
estimating it will essentially constitute our calibration.
In order to do this we could for example multiply U by
a constant, ↵ say, and by trial-and-error find a value for
↵ that yielded a ground state wave function of the form
 0 = sech(�)/

p
⇡ corresponding to � = 1/2. According

to (3) that value of ↵ would be equal to �. However this is

2

• Choose a potential of interest:

of nonperturbative phenomena by studying them exper-
imentally. It may even be possible to observe new phe-
nomena that have not yet been anticipated. For this
study we will of course be limited by the hardware that is
available to us, so the discussion is necessarily restricted
to the simpler field theories that can exhibit instanton-
like behaviour, namely the aforementioned d = 1 scalar
field theory. Nevertheless, within this theory we will be
able to set-up a potential that we then manipulate by
hand so that it develops a non-trivial vacuum structure
that induces tunnelling. We believe this is the first time
that it has been possible to implement instanton pro-
cesses in a freely chosen quantum field theory and observe
such phenomena experimentally.

II. SET-UP FOR FALSE VACUUM DECAY

It will be convenient for several practical reasons to
set-up a physical system on the annealer that recreates
quantum decay in a potential of the form

U(�) =
3

4
tanh2 �� k(t) sech2 (c(�� v)) , (1)

where c, v are constants while k is time-dependent, and
�(t) is the field. Note that � is the dimensionless object
that we will define on the annealer. When required we
will convert it into a dimensionful field ⌘ by defining

� = ⌘/⌘0 , (2)

where ⌘0 is a constant. In the d = 1 field theory there
are of course no space dimensions, and at leading order
it is isomorphic to quantum mechanics (with � playing
the role of x). However the d = 1 field theory formalism
allows for particle creation and is the starting point for
generalisation to higher dimensions, as discussed in the
introduction.

The first term in U provides a potential-well around
� = 0 which in principle allows the system to begin as a
bound-state there. As mentioned this is one of the bene-
fits of annealers over discrete gate systems: in order first
to reach a ground state, a system has to dissipate. The
k-term will then be turned on adiabatically during the
anneal in order to allow tunnelling into the global mini-
mum that forms at � = v. For this study we shall mostly
take c = 1, so that the potential during the tunnelling
period will consist of equally sized potential wells. The
potential is plotted in Fig.1 for k = 1 and various values
of separation parameter v.

This function has several nice properties for our pur-
poses. One is that each individual well has the Pöschl-
Teller �sech2� form, which can be solved. Moreover
the potentials around each minimum decay exponentially.
This makes it possible to “turn on” the global true min-
imum by adjusting k without significantly altering the
profile of the potential around the false minimum (un-
like the more commonly considered case of quartic po-
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k and v. The system is initialised around � = 0 and allowed
to decay to the true minimum at � ⇡ v.
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tential can be determined using factorisation and ladder-
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Calibrating the system with a simple harmonic oscillator

Figure 4: Anneal schedule parameters. The thermal contribu-
tion is shown as a solid line, while A and B are the coefficients
scaling the classical Ising and transverse field contributions
respectively

anneal the classical starting point is a pre-defined set of
�Z
i ’s. This implies that the initial wavefunction  (�) is a

position eigenstate (it is essentially a Dirac �-function),
containing superpositions of all energy eigenstates.

It is worth mentioning several moves that are required
to improve performance. For all our results we will us-
ing a minor-embedding on the Dwave annealer QPU, due
to its limited connectivity, with N = 200 qubits in our
effective Ising model (but obviously with more on the
physical machine due to the embedding). Performance
is improved by splitting the large number of reads into
smaller groups (of say 100) in order to reduce biasing
from each embedding. The states are re-initialised at the
bottom of the false vacuum in a classical state at the be-
ginning of each read. As mentioned one also has to be
careful to set the Ising chain parameters, namely ⇤,⇤0,
to be not much larger than the largest energy scale in
the problem. This is because as mentioned we wish to
avoid the annealer autoscaling the couplings to ĥ, Ĵ as
in (17). After such scaling, Ising chain parameters that
were very large, would imply couplings in the physical
potential that were very small. The effect of autoscal-
ing is actually an additional motivation for our favour-
ing of Pöschl-Teller potentials, because they go to a con-
stant at large field values and different � intervals do not
change the autoscaling: by contrast a quartic potential
would grow rapidly at large field values4. Conversely if
the Ising chain parameters are too small then the Ising
chain breaks and we no longer have a faithful represen-
tation of the field value. Such “wall-breaks” happen a
few percent of the time and can never be eliminated en-
tirely. Those results are simply discarded. Additionally
the minor-embedding itself (which ties qubits together in

4 It is also worth mentioning that the D-Wave annealer does
provide the possibility of turning off auto-scaling (by setting
auto�scale = False) but the performance is reduced unless the
couplings are tuned precisely anyway.

Figure 5: Typical reverse anneal schedule. The anneal pa-
rameter s increases the transverse field, and there is an initial
period of stabilisation in the minimum at the origin. The h-
gain parameter is then turned on to introduce metastability
and induce tunnelling.

a similar fashion to the Ising chain embedding in J) may
also fail. The parameters can usually be adjusted so that
these “chain-breaks” happen rarely however.

IV. RESULTS

A. Calibration on SHO ground states

We now turn to the results, and discuss the various
parameters and further interpretation as we proceed, be-
ginning by studying the system with no tunnelling. That
is we keep C(t) = C0 and set v to be very large, in or-
der to learn about the effective Planck’s constant, more
precisely the combination � = ~2/2m⌘20 . As mentioned
this amounts to our calibration of the experiment, and
to perform it in a systematic way, we will use the simple-
harmonic-oscillator (SHO). That is we take

U0(�) =


2
�2 . (25)

We show the result of 30K reads of the annealer with
 = 0.06 in Fig.6, presented as binned probability density
functions normalised to one. (In other words as N ! 1

this curve would be | |2). Note that the value of  is
chosen small enough to avoid autoscaling. For this run
we hold the annealer at sq = 0.7 for 75 µs (plus 5 µs of
ramp-up and 1 µs of ramp-down).

By inspecting this and similar curves one gains some
intuition about the behaviour of this system. First, apart
from some seemingly characteristic perturbation around
the peak it clearly appears to have reached the Gaussian
ground state, which is of the form

| |2 =
(/2�)

1
4

⇡
1
2

e�
p

/2� �2

, (26)

6

we assume for the potential

Figure 4: Anneal schedule parameters. The thermal contribu-
tion is shown as a solid line, while A and B are the coefficients
scaling the classical Ising and transverse field contributions
respectively

anneal the classical starting point is a pre-defined set of
�Z
i ’s. This implies that the initial wavefunction  (�) is a

position eigenstate (it is essentially a Dirac �-function),
containing superpositions of all energy eigenstates.

It is worth mentioning several moves that are required
to improve performance. For all our results we will us-
ing a minor-embedding on the Dwave annealer QPU, due
to its limited connectivity, with N = 200 qubits in our
effective Ising model (but obviously with more on the
physical machine due to the embedding). Performance
is improved by splitting the large number of reads into
smaller groups (of say 100) in order to reduce biasing
from each embedding. The states are re-initialised at the
bottom of the false vacuum in a classical state at the be-
ginning of each read. As mentioned one also has to be
careful to set the Ising chain parameters, namely ⇤,⇤0,
to be not much larger than the largest energy scale in
the problem. This is because as mentioned we wish to
avoid the annealer autoscaling the couplings to ĥ, Ĵ as
in (17). After such scaling, Ising chain parameters that
were very large, would imply couplings in the physical
potential that were very small. The effect of autoscal-
ing is actually an additional motivation for our favour-
ing of Pöschl-Teller potentials, because they go to a con-
stant at large field values and different � intervals do not
change the autoscaling: by contrast a quartic potential
would grow rapidly at large field values4. Conversely if
the Ising chain parameters are too small then the Ising
chain breaks and we no longer have a faithful represen-
tation of the field value. Such “wall-breaks” happen a
few percent of the time and can never be eliminated en-
tirely. Those results are simply discarded. Additionally
the minor-embedding itself (which ties qubits together in

4 It is also worth mentioning that the D-Wave annealer does
provide the possibility of turning off auto-scaling (by setting
auto�scale = False) but the performance is reduced unless the
couplings are tuned precisely anyway.

Figure 5: Typical reverse anneal schedule. The anneal pa-
rameter s increases the transverse field, and there is an initial
period of stabilisation in the minimum at the origin. The h-
gain parameter is then turned on to introduce metastability
and induce tunnelling.

a similar fashion to the Ising chain embedding in J) may
also fail. The parameters can usually be adjusted so that
these “chain-breaks” happen rarely however.

IV. RESULTS

A. Calibration on SHO ground states

We now turn to the results, and discuss the various
parameters and further interpretation as we proceed, be-
ginning by studying the system with no tunnelling. That
is we keep C(t) = C0 and set v to be very large, in or-
der to learn about the effective Planck’s constant, more
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chosen small enough to avoid autoscaling. For this run
we hold the annealer at sq = 0.7 for 75 µs (plus 5 µs of
ramp-up and 1 µs of ramp-down).

By inspecting this and similar curves one gains some
intuition about the behaviour of this system. First, apart
from some seemingly characteristic perturbation around
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Figure 6: The probability density of the SHO with N = 200
and with sq = 0.7 after time t = 75µs and with  = 0.06.
The ground-states are measured with an interval �� = 13.
The probability density approximates the red line, which cor-
responds to � ⌘ ~2/2m⌘2

0 = 0.33.

so we can reasonably conclude that for this choice of pa-
rameters 75 µs is long enough for the required dissipation.
Note that the ⌘0 parameter cancels in the /� ratio. Sec-
ondly, this curve leads to an approximate estimation of
� = 0.33. Choosing different physical couplings appears
to yield similar values of �, so not only do the wave-
functions have the correct shape but they also have the
correct functional dependence on . By contrast the re-
sult for the inferred value of � does depend on the interval
we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it approaches
a �-function, which in a reverse anneal is where it begins.
In other words the “classical” �-function position eigen-
state is simply the ground state wave function when there
is no transverse field component.

Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150mus, where N is the number of
events.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence
in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Neverthe-
less the observed behaviour provides good support for the
presence of quantum tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that
the states are really tunnelling through the barrier rather
than being thermally excited over the top, noting for ex-
ample that an explanation for the drop-off with v ob-
served in the tunnelling rate above, could simply be due
to the height of the barrier (and hence the activation
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to improve performance. For all our results we will us-
ing a minor-embedding on the Dwave annealer QPU, due
to its limited connectivity, with N = 200 qubits in our
effective Ising model (but obviously with more on the
physical machine due to the embedding). Performance
is improved by splitting the large number of reads into
smaller groups (of say 100) in order to reduce biasing
from each embedding. The states are re-initialised at the
bottom of the false vacuum in a classical state at the be-
ginning of each read. As mentioned one also has to be
careful to set the Ising chain parameters, namely ⇤,⇤0,
to be not much larger than the largest energy scale in
the problem. This is because as mentioned we wish to
avoid the annealer autoscaling the couplings to ĥ, Ĵ as
in (17). After such scaling, Ising chain parameters that
were very large, would imply couplings in the physical
potential that were very small. The effect of autoscal-
ing is actually an additional motivation for our favour-
ing of Pöschl-Teller potentials, because they go to a con-
stant at large field values and different � intervals do not
change the autoscaling: by contrast a quartic potential
would grow rapidly at large field values4. Conversely if
the Ising chain parameters are too small then the Ising
chain breaks and we no longer have a faithful represen-
tation of the field value. Such “wall-breaks” happen a
few percent of the time and can never be eliminated en-
tirely. Those results are simply discarded. Additionally
the minor-embedding itself (which ties qubits together in

4 It is also worth mentioning that the D-Wave annealer does
provide the possibility of turning off auto-scaling (by setting
auto�scale = False) but the performance is reduced unless the
couplings are tuned precisely anyway.

Figure 5: Typical reverse anneal schedule. The anneal pa-
rameter s increases the transverse field, and there is an initial
period of stabilisation in the minimum at the origin. The h-
gain parameter is then turned on to introduce metastability
and induce tunnelling.

a similar fashion to the Ising chain embedding in J) may
also fail. The parameters can usually be adjusted so that
these “chain-breaks” happen rarely however.

IV. RESULTS

A. Calibration on SHO ground states

We now turn to the results, and discuss the various
parameters and further interpretation as we proceed, be-
ginning by studying the system with no tunnelling. That
is we keep C(t) = C0 and set v to be very large, in or-
der to learn about the effective Planck’s constant, more
precisely the combination � = ~2/2m⌘20 . As mentioned
this amounts to our calibration of the experiment, and
to perform it in a systematic way, we will use the simple-
harmonic-oscillator (SHO). That is we take

U0(�) =


2
�2 . (25)

We show the result of 30K reads of the annealer with
 = 0.06 in Fig.6, presented as binned probability density
functions normalised to one. (In other words as N ! 1

this curve would be | |2). Note that the value of  is
chosen small enough to avoid autoscaling. For this run
we hold the annealer at sq = 0.7 for 75 µs (plus 5 µs of
ramp-up and 1 µs of ramp-down).

By inspecting this and similar curves one gains some
intuition about the behaviour of this system. First, apart
from some seemingly characteristic perturbation around
the peak it clearly appears to have reached the Gaussian
ground state, which is of the form

| |2 =
(/2�)

1
4

⇡
1
2

e�
p

/2� �2

, (26)

6

Figure 4: Anneal schedule parameters. The thermal contribu-
tion is shown as a solid line, while A and B are the coefficients
scaling the classical Ising and transverse field contributions
respectively

anneal the classical starting point is a pre-defined set of
�Z
i ’s. This implies that the initial wavefunction  (�) is a

position eigenstate (it is essentially a Dirac �-function),
containing superpositions of all energy eigenstates.

It is worth mentioning several moves that are required
to improve performance. For all our results we will us-
ing a minor-embedding on the Dwave annealer QPU, due
to its limited connectivity, with N = 200 qubits in our
effective Ising model (but obviously with more on the
physical machine due to the embedding). Performance
is improved by splitting the large number of reads into
smaller groups (of say 100) in order to reduce biasing
from each embedding. The states are re-initialised at the
bottom of the false vacuum in a classical state at the be-
ginning of each read. As mentioned one also has to be
careful to set the Ising chain parameters, namely ⇤,⇤0,
to be not much larger than the largest energy scale in
the problem. This is because as mentioned we wish to
avoid the annealer autoscaling the couplings to ĥ, Ĵ as
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Figure 6: The probability density of the SHO with N = 200
and with sq = 0.7 after time t = 75µs and with  = 0.06.
The ground-states are measured with an interval �� = 13.
The probability density approximates the red line, which cor-
responds to � ⌘ ~2/2m⌘2

0 = 0.33.

so we can reasonably conclude that for this choice of pa-
rameters 75 µs is long enough for the required dissipation.
Note that the ⌘0 parameter cancels in the /� ratio. Sec-
ondly, this curve leads to an approximate estimation of
� = 0.33. Choosing different physical couplings appears
to yield similar values of �, so not only do the wave-
functions have the correct shape but they also have the
correct functional dependence on . By contrast the re-
sult for the inferred value of � does depend on the interval
we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it approaches
a �-function, which in a reverse anneal is where it begins.
In other words the “classical” �-function position eigen-
state is simply the ground state wave function when there
is no transverse field component.

Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150mus, where N is the number of
events.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence
in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Neverthe-
less the observed behaviour provides good support for the
presence of quantum tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that
the states are really tunnelling through the barrier rather
than being thermally excited over the top, noting for ex-
ample that an explanation for the drop-off with v ob-
served in the tunnelling rate above, could simply be due
to the height of the barrier (and hence the activation
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Figure 8: The transition probabilities for different v with sq =
0.7 after ttunnel = 100µs.

Figure 9: Best fit values for the tunnelling fraction P (v) =
ae�bv for varying vacuum expectation values v, with tun-
nelling time ttunnel = 100µs are a = 50.5 and b = 2.29.

energy Ea) increasing with v.
In order to probe this particular question, we will now

examine a potential that provides a cleaner separation
between quantum and thermal behaviour, as shown in
Figure 10. The potential is divided up more precisely
than before, in the manner described earlier, so that it is
of the form in (24) where we take C0 = 0.2 as our initial
h-gain parameter. In other words the terms in our new
potential can be written

U0 =
3

4
tanh2 �� C0 U1 ,

U1 = k0 tanh2 �� k sech2c(�� v) , (27)

with the potential at t = 0 being the single Pöschl-Teller
well, shown as the solid blue line. When C(t) ! 1, the
first term in U1 then raises the sides of the well by (1 �
C0)k0, while the second term introduces a new well at
� = v of width ⇠ 1/c and depth (1�C0)k. We will take
c = 3 and k0 = 1/2. We then consider k = k0 or k = 2.
For this study we will also choose sq = 0.65 which gives

Figure 10: Minimally disturbing the initial state in order to
test if the tunnelling exhibits quantum or thermal behaviour.
The initial potential is a single well, and additional terms
raise a barrier between it and a new well that is introduced
with either a minimum at either exactly the same height as
the original potential, or deeper than the original one.

more rapid tunnelling, allowing us choose values of v that
are in the flat region of the potential.

There are several reasons that this constitutes a clean
separation of quantum and thermal behaviour. First it
is notable from the study above that the bound state in
which the system begins has a rather high energy. As
such if we simply introduce a new minimum as we did
earlier then it is likely that some components of the wave-
function will be able to tunnel rapidly. The initial dip at v
that was present in our previous configuration would also
be able to capture states during the dissipation phase.
Neither of these two types of state could be very easily
distinguished from ones that had thermally tunnelled.

What do we expect the tunnelling behaviour to be
in the potential above? In the situation where k = k0

no new minimum is introduced that would be quantum
mechanically accessible to any component of the initial
bound state. Therefore in principle we should not find
any states in this minimum at all if the system is purely
quantum, although in practice this will depend on there
being no remaining continuous component in the spec-
trum at all. This is in contrast to the case where k = 2
shown as the dashed red line in Fig. 10, where the stan-
dard quantum tunnelling should take place. Moreover
according to (14) the observed tunnelling rate into this
minimum should again drop-off with increasing v, even if
we consider values of v in the region where barrier height
is constant.

Let us contrast this behaviour with what one would
expect for a thermally activated system. In this case
there would be little distinction between the k = 1/2
and k = 2 cases. Once thermal effects are large enough
to excite states over the barrier, roughly similar propor-
tions would be captured by the new minimum at � = v.
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so we can reasonably conclude that for this choice of pa-
rameters 75 µs is long enough for the required dissipation.
Note that the ⌘0 parameter cancels in the /� ratio. Sec-
ondly, this curve leads to an approximate estimation of
� = 0.33. Choosing different physical couplings appears
to yield similar values of �, so not only do the wave-
functions have the correct shape but they also have the
correct functional dependence on . By contrast the re-
sult for the inferred value of � does depend on the interval
we choose for �. This is because different intervals with
the same choice of N = 200 imply different ⇠, and not
surprisingly this affects the mass density m in the field
theory.

We stress that absolutely no dynamics was introduced
by hand into the annealer, and therefore this constitutes
a genuine measurement of the ground state wavefunction
of a quantum mechanical system.

It is also instructive to consider the fact that the an-
nealer returns a wave-function with different � depending
on the value of sq. When we choose sq we imbue the effec-
tive field theory with a kinetic �̇2 term that has a certain
value of ~2/2m we do not know. The ground state has
to adjust to have the matching value of �. Clearly as
we let sq ! 1 the value of ~2/2m in our effective theory
must go to zero because quantum effects turn off there.
Accordingly the ground state wave-function becomes in-
creasingly narrow until in the classical limit it approaches
a �-function, which in a reverse anneal is where it begins.
In other words the “classical” �-function position eigen-
state is simply the ground state wave function when there
is no transverse field component.

Figure 7: The probability distribution with v = 2.5, sq = 0.7
after ttunnel = 50, 100, 150mus, where N is the number of
events.

B. Tunnelling

We now adjust the h-gain schedule, so that for a pe-
riod, ttunnel, the second minimum appears and the sys-
tem is allowed to tunnel into it. One can perform the
same exercise as for the SHO ground state. The result
(now displayed as a probability distribution such that the
sum of the bin-counts is normalised to unity) is shown in
Fig.8, for the system when it is left for 50, 100, 150µs in
the presence of the second minimum, with k = 1 in the
potential of Eq,(1), where we take v = 2.5. The pres-
ence of tunnelling is clearly evident. Further evidence
in support of this being genuine quantum tunnelling can
be found by studying the decay rates as a function of v.
This is shown in Fig.8 for several values of v where the
expected exponential suppression of the decay rate with
increasing v is apparent. This exponential behaviour can
be fit to the approximation in (14), as in Fig.9. For
the measured value of � the theoretical expectation is
log� = 3.0 ⇥ (1.66 � v). The best fit value (given by
the red line in Fig.9) is log� = 2.29 ⇥ (1.71 � v). Per-
haps unsurprisingly, the overall parameter � remains one
of the most difficult aspects to determine precisely given
the limitations of the annealer for this study. Neverthe-
less the observed behaviour provides good support for the
presence of quantum tunnelling.

C. Quantum versus Thermal

It is important to definitively exclude the possibility
that what is being observed is thermal rather than quan-
tum tunnelling. More precisely we wish to establish that
the states are really tunnelling through the barrier rather
than being thermally excited over the top, noting for ex-
ample that an explanation for the drop-off with v ob-
served in the tunnelling rate above, could simply be due
to the height of the barrier (and hence the activation
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Also dynamics has characteristic behaviour. For example it still 
“tunnels” to the bottom of a potential even if there is no 
barrier: i.e. the wave function leaks across, rather than rolling 
as a lump —
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Numerically solving S.E. we find (this takes an hour!) 
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�2

�1

�2U(�1,�2)

Also dynamics has characteris2c behaviour. For example it s2ll “tunnels” to the 
bo;om of a poten2al even if there is no barrier: i.e. the wave func2on leaks 
across, rather than rolling as a lump — 

Mul2ple measurements on the quantum annealer:
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Also dynamics has characteris2c behaviour. For example it s2ll “tunnels” to 
the bo;om of a poten2al even if there is no barrier: i.e. the wave func2on 
leaks across, rather than rolling as a lump —

Mul2ple measurements on the quantum annealer:
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Example 2: Optimisation comparison quantum vs classical

gradient descent Nelder-Mead Thermal Annealing Quantum Annealing

Multi-well potential

Applied to several examples in [Abel, Blance, MS ’21], let’s show one here:
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Results for Multi-well potential

Quantum 
annealer almost 

never gets 
stuck in wrong 

minimum

QA is depth 
savvy, i.e. works 

qualitatively 
different 

• Quantum algorithms finds global 
minimum of potential reliably and 
fast!

[Abel, Blance, MS ’21]

Clear quantum advantage
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Completely Quantum Neural Networks

This	tunnelling	ability	can	be	used	to	opEmise	loss	funcEons	in	Neural	Nets	

The	problem	-	train	a	NN	to	find	the	weights	and	biases	on	quantum	annealer:		

NN	produces	outputs	Y	by	passing	inputs	x	through	layers	with	acRvaRon	funcRons	g	as	follows:

This	tunnelling	ability	can	be	used	to	opEmise	loss	funcEons	in	Neural	Nets	

The	problem	-	train	a	NN	to	find	the	weights	and	biases	on	quantum	annealer:		

NN	produces	outputs	Y	by	passing	inputs	x	through	layers	with	acRvaRon	funcRons	g	as	follows:

Structure of node i, in layer L

This	tunnelling	ability	can	be	used	to	opEmise	loss	funcEons	in	Neural	Nets	

The	problem	-	train	a	NN	to	find	the	weights	and	biases	on	quantum	annealer:		

NN	produces	outputs	Y	by	passing	inputs	x	through	layers	with	acRvaRon	funcRons	g	as	follows:

Network output in final layerTo	find	weights	and	biases	we	implement	the	loss	funcRon	for	the	NN	on	the	annealer:	

Binary	encode	the	acRvaRon	funcRons	

So	far	simple	NN’s	(single	hidden	layer)	
and	simple	acRvaRon	funcRons	(e.g.	
quadraRc).		

But	works	for	limitless	data!	

e.g.	can	implement	simple	NN’s	for	
classificaRon	problems	(y=0,1)	

Loss function

[Abel, Criado, MS ’22]
• Developed binary encoding of weights 

(discretised)

• Polynomial approximation of activation 
function

• Reduction of binary higher-order 
polynomials into quadratic ones (Ising model)
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Completely Quantum Neural Networks

Reliable and very 
fast ground-state 

finder of loss 
function

Optimal network training
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Application to differential equations and variational methods 

Build the full function, here a DE into the loss function, incl boundary conditions

identify trial solution with network output

Define your mathematical task as an optimisation problem

[Piscopo, MS, Waite ’19]
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QADE: Solving differential equations with a quantum annealer

Quantum algorithmClassical Neural Network
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[Criado, MS ’22]

[Araz, Criado, MS ’21][Piscopo, MS, Waite ’19] http://gitlab.com/jccriado/qade
https://gitlab.com/elvet/elvet
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QFitter
[Criado, Kogler, MS ’22]Example Higgs EFT fit:

• Fast and reliable state-of-the-art 
Higgs, ELW, … fits

• Convergence no problem for non-
convex                    functions

8
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FIG. 4. ��2 = �2 � �2
min as a function of cHW , displaying

a local minimum close to cHW = 0 and a global one near
cHW = �0.05.

parameter that decreases along the run, known as
the temperature. The algorithm explores the vicin-
ity of local minima while changing T depending on
the number of failures to find a better minimum in
the previous steps. This may allow the algorithm
to escape local minima in some cases. We chose the
initial value of T to be 106 with a minimum value
of 10�6, an adaptive speed of 1 and a step size of
0.01. The maximum number of steps is chosen to
be 105.

• Finally, we also consider the same algorithm as for
the quantum annealing approach, with the QUBO
formulation and a zooming process, replacing the
quantum annealing runs with simulated annealing.
In this case, the parameter points to be updated
by the algorithm are the sets of 0 or 1 values of the
binary variables. The random nearby point is ob-
tained by flipping a random variable. The number
of steps is usually measured here in terms of sweeps,
which correspond to as many updating steps as bi-
nary variables are present in the problem.

We refer to the methods not using the QUBO formula-
tion as standard-formulation methods. We show a com-
parison of the best-fit values of the coe�cients and �2

obtained from all the methods in Table I. The classical
methods are initialized to a point with cW = cg = c� = 0.

Inspecting the �2 values given in the Table I, one can
see that classical algorithms that start at the point ci = 0
typically get trapped in the local minimum nearby. This
problem is not present in the quantum annealing ap-
proach. The minimum with �2 = 135 obtained by Mi-
nuit for initial point cHW = �0.05 corresponds to the
one from the quantum annealer. The small di↵erences in
the minimum value of �2 and the best-fit parameters are
because we have neglected some quadratic contributions
in the formulation of the QUBO problem, which has no
consequences on the general shape of the �2 function,
with a global minimum around cHW = �0.05 and a local

one close to cHW = 0.
The QUBO-formulation simulated annealing results

depend strongly on the schedule for the temperature.
For large starting temperatures, there is no dependence
on the starting point. The results also vary consider-
ably for fixed annealing parameters from run to run. We
find the most consistent results with a schedule that ex-
ponentially increases the inverse-temperature parameter
� from 1 ⇥ 10�5 to 10 in 1 ⇥ 106 steps, performing one
sweep per step. The results fall into three classes: (A)
those on the “wrong” side of the barrier, with �2

' 4000;
(B) those on the correct side, with �2 < 1000; and (C)
those for which the zooming gets stuck at �2 > 107. We
perform 40 runs and find that 13% of the runs belong to
class A, 82% to class B, and 5% to class C. The results in
class (B) also present a considerable variation. We show
an arbitrary example in Table I.
In Table I, we also provide the total time spent per-

forming the optimization for each method. Again, we
run Minuit, the standard-formulation simulated anneal-
ing and the QUBO simulated annealing in an Apple M1
processor. Since quantum annealing is performed on a
dedicated device, the numbers cannot be compared di-
rectly. However, we note that quantum annealing re-
quires orders of magnitude less time to perform this task.

IV. CONCLUSIONS

We have presented QFitter, a quantum annealing-
based method for fitting EFT coe�cients to experimental
measurements. The �2 is encoded as a QUBO problem
which can be directly embedded in the currently-available
quantum annealers. The required number of qubits de-
pends on the number of coe�cients to be fitted, the non-
linear terms in their contributions to observables (which
require auxiliary qubits), and the precision to which they
are to be determined. The number of observables in-
cluded does not a↵ect this.
Since physical annealers only provide a limited amount

of qubits, the practical implementation of QFitter can
only be done for a limited number of coe�cients, pre-
cision and non-linearities. We have used a zooming al-
gorithm, in which the precision is increased iteratively
through several annealing runs, to overcome this limi-
tation partially. With this setup, we have found that
fitting problems involving at least eight coe�cients and
their quadratic dependencies can be embedded in current
quantum annealing devices.
Finally, we have tested the performance of QFitter

with three examples. The first two, the EWPO and the
Higgs fit, involve a convex �2 function. The quantum
approach gives comparable results to the classical ones
here. We have then modified the �2 for the Higgs fit to
make it non-convex. By comparing with several classical
algorithms, we have found that the quantum one is the
one that ends in the global minimum most consistently
with a considerable gain in processing time.

2

II. METHOD

A. Quantum annealing

Quantum annealing is a method for finding the ground
state of a given Hamiltonian H1. The Hamiltonian of a
quantum annealing device takes the form

H = A(s)H0 +B(s)H1, (1)

where s is a free parameter that can be controlled exter-
nally; A(s) and B(s) are continuous functions such that
A(0) > 0 = B(0) and A(1) = 0 < B(1); and H0 is a
Hamiltonian whose ground state is known in advance.

The solution to the problem is obtained by preparing
the system in the ground state of H0 and changing s
continuously from s = 0 at an initial time ti to s = 1 at
a final time tf . The function s(t) described by the time
evolution of s is known as the schedule. The adiabatic
theorem ensures that, if the change in s is su�ciently
slow, the system is likely to end in the ground state of
the target Hamiltonian H1.

A concrete realization of this method is transverse-
field quantum annealing, which has been implemented
in real-world devices. In this realization, the system can
be viewed e↵ectively as a collection of qubits (that is,
quantum systems with two independent states), with the
Hamiltonians H0 and H1 given by

H0 =
X

i

�̂i

x
, H1 =

X

i

hi�̂
i

z
+
X

ij

Jij �̂
i

z
⌦ �̂i

z
. (2)

where hi and Jij are adjustable parameters, and �̂i

x,z

are the x, z Pauli matrices acting on the ith qubit. To
perform a computation using transverse-field quantum
annealing, one needs to encode its result as the ground
state of the Ising Hamiltonian H1.

The D-Wave devices provide a physical implementa-
tion of this setup, in which not all Jij couplings can
be set to a non-vanishing value. In the state-of-the-
art Advantage system architecture, there are more than
5000 available qubits, but each one is coupled only to 15
others. To find the ground state of Ising models with a
higher degree of connectivity, several qubits are chained
together with large coupling to act as a single qubit with
more connections. The mapping between the abstract
Ising model Hamiltonian to be minimized and the one
implemented in the physical device is known as an em-

bedding.

Once an embedding has been found, and the schedule
s(t) and hi, Jij parameters are set, the annealer is typ-
ically run several times to reduce the e↵ects of external
noise. Then, the final state with the least energy ob-
tained from the di↵erent runs is selected. The number of
runs is referred to in the context as the number of reads.

B. QUBO formulation

The eigenstates of the quantum Ising Hamiltonian H1

correspond to the states of its classical analogue, whose
Hamiltonian is

Hclassical =
X

i

hi�i +
X

ij

Jij�i�j , (3)

with the �i being classical variables taking the values
�i = ±1. Thus, the problem solved by the transverse-
field quantum annealers can be viewed equivalently as
finding the set of values for the �i such that Hclassical is
minimized:
This problem can be solved both using quantum an-

nealing and classical algorithms, such as simulated an-
nealing. Quantum annealing has been shown to be more
consistent in finding the ground state of some non-convex
functions [14]. In Section III, we will compare the perfor-
mance of quantum annealing to several classical methods
for EFT fits.
A useful reformulation of the classical Ising Hamilto-

nian minimization problem is obtained by making use of
the binary variables ⌧i = (�i + 1)/2, whose possible val-
ues are 0 or 1. In terms of them, the problem can be ex-
pressed as the minimization of a homogeneous quadratic
polynomial:

min
⌧i=0,1

⌧iQij⌧j . (4)

This is known as a Quadratic Unconstrained Binary Op-
timization (QUBO) problem. We will refer to the func-
tion L = ⌧iQij⌧j to be minimized in such a problem as
the loss function.

C. Log-likelihood as a QUBO

We now tackle the task of finding a QUBO formula-
tion for fits of EFT Wilson coe�cients to observables.
Let O(exp)

i
be the experimentally-measured values of the

observables under consideration, and O(th)
i

(c) the corre-
sponding theoretical predictions, as functions of the col-
lection of Wilson coe�cients c = (c1, . . . , cM ). We as-

sume a Gaussian likelihood L / e��
2
/2, with

�2 =
X

ij

VaC
�1
ab

Vb, Va = O(exp)
a

� O(th)
a

(c), (5)

where C�1 is the inverse covariance matrix. The
maximum-likelihood estimator for the coe�cients can be
obtained by minimizing �2.

In any EFT, the theoretical predictions O(th)
a (c) are

computed as a series in inverse powers of the cuto↵ scale
⇤, which is cut at a fixed power, depending on the tar-
get precision of the calculation. Each Wilson coe�cient

is associated with an inverse power of ⇤. The O(th)
a (c)
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consistent in finding the ground state of some non-convex
functions [14]. In Section III, we will compare the perfor-
mance of quantum annealing to several classical methods
for EFT fits.
A useful reformulation of the classical Ising Hamilto-

nian minimization problem is obtained by making use of
the binary variables ⌧i = (�i + 1)/2, whose possible val-
ues are 0 or 1. In terms of them, the problem can be ex-
pressed as the minimization of a homogeneous quadratic
polynomial:

min
⌧i=0,1

⌧iQij⌧j . (4)

This is known as a Quadratic Unconstrained Binary Op-
timization (QUBO) problem. We will refer to the func-
tion L = ⌧iQij⌧j to be minimized in such a problem as
the loss function.

C. Log-likelihood as a QUBO

We now tackle the task of finding a QUBO formula-
tion for fits of EFT Wilson coe�cients to observables.
Let O(exp)

i
be the experimentally-measured values of the

observables under consideration, and O(th)
i

(c) the corre-
sponding theoretical predictions, as functions of the col-
lection of Wilson coe�cients c = (c1, . . . , cM ). We as-

sume a Gaussian likelihood L / e��
2
/2, with

�2 =
X

ij

VaC
�1
ab

Vb, Va = O(exp)
a

� O(th)
a

(c), (5)

where C�1 is the inverse covariance matrix. The
maximum-likelihood estimator for the coe�cients can be
obtained by minimizing �2.

In any EFT, the theoretical predictions O(th)
a (c) are

computed as a series in inverse powers of the cuto↵ scale
⇤, which is cut at a fixed power, depending on the tar-
get precision of the calculation. Each Wilson coe�cient

is associated with an inverse power of ⇤. The O(th)
a (c)
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Summary

• For more exciting applications (quantum advantage), need development 
of technical realisation of quantum computers  
(size, fault tolerance, coherence, operations,…)

• Quantum Machine Learning often shows an improved performance over 
classical Machine Learning, when limiting to a similar complexity of the model. 
Can exploit QM prop: entanglement, superposition principle and tunnelling

• Quantum Machine Learning is exciting research area that rapidly expands, 
supported through private and public sector. Many algorithms to be invented.
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