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* The discovery of the Higgs boson at the LHC in 2012 opened a new era of exploration of the high energy
frontier at particle colliders with new Yukawa force still largely unknown and many puzzles that the SM
cannot explain (dark matter, neutrino mass, matter-antimatter asymmetry, gravity...)

* LHC rapidly evolving to a precision machine, capable of measuring small deviations over SM predictions

- Extremely precise and highly correlated data and complex theoretical predictions
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Modern machine learning is
driving a paradigm shift in
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all aspects of theoretical predictions
and phenomenology analyses.

A Living Review of Machine

Learning for Particle Physics
https://iml-wg.github.io/HEPML-LivingReview/

* The discovery of the

frontier at particle co
cannot explain (dark
* LHC rapidly evolving

Higgs boson at the LHC in 2012 opened a new era of exploration of the high energy

liders with new Yukawa force still largely unknown and many puzzles that the SM

matter, neutrino mass, matter-antimatter asymmetry, gravity...)
to a precision machine, capable of measuring small deviations over SM predictions

~ Extremely precise and highly correlated data and complex theoretical predictions
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EXPERIMENTAL DATA AT THE LHC

CMS Experiment at the LHC, CERN | ® u g e voO | ume Of d ata

Data recorded: 2012-May-13 20:08:14.621490 GMT '

Run/Event: 194108 / 564224000

® High-level and low-level
triggers

® |ncreased luminosity goes
with large pile-up

® Must process the events to
give theorists useful, robust
and least possible biassed
information

® Must make data reusable
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THEORY PREDICTIONS AT THE LHC

* All we want is the probability of a given theory T given some data D
® [n Bayesian terms

P(T|D) ~ P(&|D)




THEORY PREDICTIONS AT THE LHC

* All we want is the probability of a given theory T given some data D

® [n Bayesian terms

P(T|D) ~ P(&|D)

Likelihood Prior

Evidence

® Consider theoretical predictions at the LHC
® The likelihood itself at the LHC is extremely complicated

Divide et impera
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THEORY PREDICTIONS AT THE LHC

Quantum theory

Lagrangian
L (SM, SM + EFT, BSM)
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THEORY PREDICTIONS AT THE LHC

Quantum theory
Lagrangian
L (SM, SM + EFT, BSM)

Scattering Phase space PDFs orton lovel
amplitudes integration (proton structure) arton leve

QCD and QED radiation Fragmentation,
(Parton Showers) Hadronisation, Jets

Particle level

Detector Event reconstruction
. . . Detector level
simulation and selection




Part |

~ o Applicationof ML
to parton level
predictions
(1) matrix elements
(2) phase space

(3) parton distribution PARTICLE PHYSICS
MACHINE LEARNING functions PHENOMENOLOGY AND THEORY

(4) parameter
determination
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PARTON LEVEL PREDICTIONS
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(1) ML & AMPLITUDES voi  QED rrerr
RS R
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® Regression problem = Exploit NN flexibility to speed up computation of amplitudes: train ML
regressors (NNs, or ensemble of NNs) with pre-computed “true” (slow) amplitudes for phase space

points x, and use them to predict same amplitudes accurately and fast [arXiv:1912.11055,2002.07516,
2006.16273, 2008.10949, 2105.04898, 2106.09474, 2109.11964, 2206.08901,2302.04005,2301.13562, 2306.07226 ...]
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Maitre, Troung arXiv: 2302.04005 ete” — 7 /fy* — qq + Ngg Aylett-Bullock et al, arXiv: 2106.09474



(1) ML & AMPLITUDES

® To generate higher-order scattering amplitudes, ML regressors (ML surrogates) must be precise
enough to reflect the underlying theory precision.
® Reliable uncertainty estimate is key to use ML surrogates. How to quantity uncertainty?

® Heteroscedastic losses (including unknown uncertainty in the loss and learning it in deterministic NN),
Bayesian NN (BNINs) and Repulsive Ensembles (REs) can be used to track systematic and statistical
uncertainties and their performance benchmarked [arXiv:2206.14831, 2412.12069 ...]

Bayesian NNs Repulsive ensembles

Ensemble of networks Output Ensemble of networks

Elmer et al, arXiv: 2412.12069



(1) ML & AMPLITUDES

‘Aij;)l---n(xﬂgrue ~ ‘Aljﬁln(x)‘l%N

¢ Multi-loop integrals = Amplitudes beyonc
leading order contain loop integrals, and M
optimise the computation of integrals.

® |ntegrable singularities on real axis = contour
deformation into complex plane.

® NN-assisted algorithms (based on normalising
flows) offer great potential to amplity precision of
standard contour deformation algorithms.

[Winterhalder etal 2112.09145]

® See also [Calisto et al 2312.02067] and [Maitre et al
2211.02834] for alternative approach to compute

_ Can
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(1) ML & AMPLITUDES

ntegration of scattering amplitudes gives rise to generalised polylogarithms.
No classical algorithms to simplify expressions. Mac

= Reinforcement Learning: apply known identities like moves in a game and learn them by training.
= Transformer Networks: learn to guess the answer by translating from complicated to simple

10/33

nine learning huge potential [Dersy, Schwartz, Zhang 2206.04115]

® Similar techniques applied to simplity scattering amplitudes expressed in terms of spinor-helicity using transformers

and contrastive lea rning [Cheung, Dersy, Schwartz 2408.04720]

Polylogarithmic expression

Lis(2) + %ln2(—x)

Symbol

—[1-3)® ]+ [z®2]

RL

Simplified polylogarithmic expression

Lis ()

Transformer

Simplified Symbol

1-2)®cz

Dersy, Schwartz, Zhang, arXiv: 2206.04115

Transformer trained on data generated by scrambling

- —92[12]" 34] [35] + (34)[12]" [13] [23] [45] - (34)2[12]" [14] [23] [3]
" (23)(34)[13]7 [34] [35] + (23)(45)[13]” [35] [45] — (23)¢45)[13] [14] [35]°

15] [14][35] - [13][45]< ; )
[34] —(34)*[12]" [35] — (34)*[12]" [15] [23]

Schouten 2 - [12][35] + [15][23]
scramble (23)(34)[13]" [35] — (23)(45)[13] [15] [35]> [25] > i
(34)2 '12]2 [25] Schouten
(45)[15] — (34)[13]  — -
(24) - o ~ (23)(34)[13] [35] — (23)(45)[15] [35]
Momentum conservation (

(34)*[12] [25]
(23)(24)[35]

Desired output

transformer
will learn to
to unscramble
(translate)

Cheung, Dersy, Schwartz, arXiv: 2408.04720



(1) ML & AMPLITUDES

® Use a NN transformer model to predict coefficients of elements in the symbols for scattering amplitudes in
N = 4 planar Super Yang-Mills (SYM) theory [Cai, Merz et al, arXiv: 2405.06107]
® Two-step learning: coefticient magnitude by grouping, then the true signs.

® Model can predict the coefficients at loop L using only a small subset of related coefticients at loop (L — 1).
® Extendable to other problems where multi-loop data encoded by symbols

Accuracy, Relation "final18"

100 A e (AR
80 -
)
< 60
>
o
§ 40
< .
—— Magnitude correct
20 - —— Sign correct
—— (Coefficient correct
0 —— Relation correct
0 50 100 150 200

2 loops

Epochs

Cai, Merz et al, arXiv: 2405.06107
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2) ML & PHASE SPACE

&%/ Aii 1. n]?d®, — T :/ f(u") du’
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e Key task improve precision and efficiency of integration of squared amplitudes over phase space

® |mportance sampling and multi-channeling efficiency depend on suitability of variable transformation
and on the judicious choice of channels

e Standard VEGAS approach [G.P Lepage 1978] adaptive importance sampling algorithms that fits bins with equal
probability and varying width: cheap to implement but no correlations = struggles with multimodal functions it
peaks not aligned with coordinate axes.

Eaive Monte Importance
arlo estimate /\ sampling

Multi-
channeling

N
~ By = & ) = By = Ly ) (]
]NEN—N;]E(U@)—<JC>:E INEN_N;g(mi)_<9>x~g(x)

Image credit @ T. Heimel, Pheno 2023



(2) ML & PHASE SPACE

® Bijective Normalising Flows (NFs) chain of invertible, learnable transtormations with exact likelihood from

13/33

change of variables that allow to redistribute input of random variables z1 to the mapping functions z, and better

adapt to integrands

[Miller et al,1808.03856, Bothmann et al 2001.05478, Gao et al. 2001.05486, 2001.10028, Chen et al 2009.07819, Pina-Otey et al 2005.12719...]

Image credit @ T. Heimel, Pheno 2023

0z1(zn; C
0% p(zalc) = log p(z1) + log ( det P19
0z,
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sampling



(2) ML & PHASE SPACE

® MadNIS framework combines standard automated event generator MadGraph with ML too
(Channel-Weight NN to encode local multichannel weights +
to make computation faster and more accurate [Heimel, Winterha

I~ ENn = Z <O‘j(x) e >a;~gj(:c)

Channel weight from
standard MadGraph x
function parametrise by NN

g; ()

\

Analytic mapping by MadGraph
refined with NFs

nvertible NN =a N

ter etal 2212.06172, 23
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(3) ML & PARTON DISTRIBUTION FUNCTIONS

15/33

® \What is the probability that for a given event a parton i is carrying a fraction x; of one proton’s momentum

and parton j is carrying a fraction x» of the other proton’s momentum?
® Parton Distribution Functions (PDFs) carry this information and their uncertainty is crucial input at the LHC

Parton
Distribution
Functions

u~ | Amplitudes +
Phase space
Integration

wr * PDFs are universal
* QCD predicts dependence of PDFs

on energy M

= can extract PDFs from data

0“.'$ 0“ ..$
L\ }"M v Theory



(3) ML & PARTON DISTRIBUTION FUNCTIONS
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® Given finite set of discrete Ny, experimental data points D want to determine some functions {f} at a given

energy scale uo that theoretical predictions depend on and estimate their uncertainty

® \Want to find a infinite-dimensional probability density from a finite number of information

(regression & infinite-dimensional inverse problem).
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proton-proton
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(3) ML & PARTON DISTRIBUTION FUNCTIONS

® Traditional approach: project infinite dimensional functional space into N,,-dimensional parameter space.
® Problem: parametrisation might induce bias and uncertainties are inflated by a “tolerance” factor

e With Deep NN can choose parametrisation so large that in principle can fit any conceivable function t
Forte, Latorre 2002] [Ball, Del Debbio, Forte, Guffanti, Piccione, Rojo, MU, 2008]
NNPDF4.0: Single DNN with hyper-parameter optimised via K-fold procedure

Ball et al arXiv:2109.02653 + public code publication arXiv:2109.02671] [Cruz-Martinez et al 2410.16248]
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(3) ML & PARTON DISTRIBUTION FUNCTIONS
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J) ML & PARTON DISTRIBUTION FUNCTIONS

® How to estimate uncertainties?

® Use Monte Carlo - or bootstrap - error propagation by importance sampling [Giele, Kosover 1993] [Forte et al, 2006]

® Throw random pseudo data points about the experimental data Dy, according to a multivariate normal
distributions centred on the experimental data Do with experimental covariance matrix Zeyp.

® For each pseudo data compute the optimal point on the theory surface based on training-validation splitting
and minimisation stopping procedure and obtain associated parameter values.
® Repeating gives an approximation to the parameter distribution by importance sampling.

Do =t+n d; W)

T T \ 1~ N(0, Xexp)
Vector of central Vector of “true”, unknown Observational

3;<Eee:mental experimental values noise o /

,u(k) — D() + €(k) — { + N -+ E(k)\ o

Pseudo-data replicas, k = 1, ..., Nrep M) ~ N(O 2. )
)y —exXp

> dq




J) ML & PARTON DISTRIBUTION FUNCTIONS

Sampling in the data space projected
in the PDF space.
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(3) ML & PARTON DISTRIBUTION FUNCTIONS

® Using a ML model instead of a fixed parametrization allows to include more data (hence more information) in the fit.
® Fityields smaller uncertainties in the data region with same input dataset and better fit-quality.

gg luminosity

Vs =14 TeV
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1.12
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i NNPDF3.1 meth.; NNPDF4.0 data set (68 c.l.+10)

0.85 ———— 1 e
10! 102 103

My (GeV)

® DNN model exhibits smaller uncertainty in data region

1.17

compared to traditional PDF sets but larger uncertainties

in extrapolation region.

® General Adversarial Network (GANs) used to provide
compressed PDF set with less replicas and as accurate
as the full ensemble [Carrazza et al 1504.06469, 2104.04535]
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(3) ML & PARTON DISTRIBUTION FUNCTIONS
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® NNPDF4.0 public code for testing and reproducibility https://github.com/NNPDF & https://docs.nnpdf.science/
® DNN methodology scrutinised with statistical closure test to assess faithfulness of uncertainties in the data
region, response of DNN to inconsistent datasets and generalisation tests.

[Barontini et al, 2503.17447, Chiefa et al 2501.10359]

Generate several “run of the universe”
D() — 1t + 7]

t = G(wo)\\Experimental noise

Pretend know the “truth”

ONNLO @ (f ® f)«true” PDF

Propagate uncertainties via MC sampling

Measure normalised bias R, = mean square
deviation of predictions from the “truth” in
units of predicted standard deviation

Full data
1.8 -
Up to moderate data
1.6 - 1 Inconsistencies the DNN
' model corrects for them
and uncertainties still
faithfully estimated!
1.4 -
1.2 -
10t+—rrnn1T 1____}' -------------
0.0 0.2 0.4 0.6 0.8 1.0
A

Barontini et al, 2503.17447
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4) ML & PARAMETER DETERMINATION

Image credit: F. Maltoni
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4) ML & PARAMETER DETERMINATION

Image credit: F. Maltoni
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As more precise data and SM theoretical
predictions become available, we can identitfy
patterns of small differences induced by new
ohysics and from there deduce what is the new
model that causes a given pattern!

Experimental
measurements

SM predictions

v

Wilson Coefficients
parametrising the deviations
due to heavy BSM physics




(4) ML & PARAMETER DETERMINATION

® |sthere any sign of BSM physics (non-zero Wilson coefticient) in the

gluon-top coupling?

® Which measurement is the most sensitive to these parameters?
® Inclusive, single to multi-differential, which variables, which binning?

CMS collaboration arXiv:2008.07860

CMS 35.9 b (13 TeV)
N - [ | T T 1 I 1T T 1 1T T 1 | I. | I 1T 1T 1 l 1T 1T T ]
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plus many other distributions...
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(4) ML & PARAMETER DETERMINATION

® |sthere any sign of BSM physics (non-zero Wilson coefticient) in the @

gluon-top coupling?

® \Which measurement is the most sensitive to these parameters?
® Inclusive, single to multi-differential, which variables, which binning?
® Humans can only visualise things in one/two variables but ML tools can “see” in an

Q|

arbitrarily large number of dimensions and find optimal variables and binning to “see”

new physics

J. ter Hoeve, Cometa
General Meeting 2024

r(xi; i1, o) =
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p(xi|po)
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Binned, univariate

® Generate likelihood (parton level) for each phase space point
p1: SMEFTI vs uo: SM

® Train NN to approximate ratio and compute signal strength

e Example of Neural Simulation Based Inference
[Gomez Ambrosio et al, arXiv:2211.02058]

aw SR
minimise e.g. the cross-entrop
~" N \ o

(8)

Ctu

Optimal inference

Unbinned, multivariate

Q |

ol

Q |
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(4) ML & PARAMETER DETERMINATION

® Similar works
= MadMiner series [J.Brehmer, K.Cranmer, G.Louppe ... 1907.10621, 1805.00020, ...]
= Parametrised classifiers for SMEFT [A. Glioti et al 2007.10356]
= [earning the EFT likelihood with tree boosting [R. Schéfbeck et al 2205.12976]
= Back to the Formula [A. Butter et al 2109.10414]
= Boosted likelihood learning with event reweighing [A. Glioti et al 2308.05704]
= Designing Observables for Measurements with Deep Learning [O.Long et al 2310.0871
= ATLAS analysis for off-shell Higgs to Z boson signal strength [ATLAS-CONF-2024-015]

- ATLAS Simulation Preliminary

| 1] L] 1 1 l L L L) L I ] T L Ll I 1 Ll LA} .1
- /]
LR ]
L ]
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ATLAS-CONF-2024-015 9]



(4) ML & PARAMETER DETERMINATION [

- ATLAS Simulation Preliminary -

® Similar works i AR
: : [ e Unbinned NSBI Stat+Syst f }

= MadMiner series [J.Brehmer, K.Cranmer, G.Louppe ... 1907.10621, 1805.00020, ...] 6 B Unbinned NSBI Stat Only i -

= Parametrised classifiers for SMEFT [A. Glioti et al 2007.10356]  ---- Binned log [ps/ p(1.0)] Stat Only r |

= |earning the EFT likelihood with tree boosting [R. Schéfbeck et al 2205.12976] - + Binnedlog [ps/p(1.0)] Stat+Syst '

= Back to the Formula [A. Butter et al 2109.10414]

= Boosted likelihood learning with event reweighing [A. Glioti et al 2308.05704]

= Designing Observables for Measurements with Deep Learning [O.Long et al 2310.0871
= ATLAS analysis for off-shell Higgs to Z boson signal strength [ATLAS-CONF-2024-015]

00 05 10 15 20 25

Input Hidd Hidd Convoluti
npu idden idden PDF onvolution  SM SMEFT ATLAS-CONF-2024-015

layer layer 1 layer 2 flavours step Observable Observable

e Other directions
= Simultaneous fit of SMEFT parameters and
PDFs using a deep NN
4:11’115553?15 https://github.com/HEP-PBSP/SIMUnet
% [Costantini et al, 2402.03308]
= Bayesian simultaneous fits of PDFs and

parameters with flexible ML framework
[Colibri, Costantini et al, upcoming]

M. Costantini et al arXiv: 2402.03308
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Quantum theory

Lagrangian
L (SM, SM + EFT, BSM)

Scattering Phase space PDFs Sarton level
amplitudes integration (proton structure) arton leve
QCD and QED radiation Fragmentation, ot Tovel
(Parton Showers) Hadronisation, Jets articie leve

Detector Event reconstruction
. . : Detector level
simulation and selection




FROM PARTON TO DETECTORS AND BACK

Inverse

Forward

Detectors

® End-to-end ML surrogates for fast HEP event simulations learn multiple steps at

once [see Snowmass Report 2203.07460 for a review]
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FROM PARTON TO DETECTORS AND BACK

Forward

Hadronization Detectors Events

A

Image Credit
@Plehn et al 2211.01421

Inverse

® End-to-end ML surrogates for fast HEP event simulations learn multiple steps at
once [see Snowmass Report 2203.07460 for a review]

® First attempts based on GANs and VAEs
1901.00875,1901.05282,1903.02433,1907.03764,1912.02748,2001.11103...]

® Improved speed and efficiency with Normalising Flows
2011.13445,2110.13632,2211.13630,2104.04543,...]

® High precision with Diffusion and Transformer models
2303.05376,2305.10475,2307.06836...]

e Key properties: conditional GANs and Transformers allow inversion of simulation
chain from detector back to parton level and methods like BNNs and classifiers

can be applied for error control [2305.07696...]



FROM PARTON TO DETECTORS AND BACK

Forward

Shower

5

Hadronization

<

Detectors

Inverse

® End-to-end ML surrogates for fast HEP event simulations learn multiple steps at

once [see Snowmass Report 2203.07460 for a review]

® First attempts based on GANs and VAEs
1901.00875,1901.05282,1903.02433,1907.03764,1912.02748,2001.11103...]

® Improved speed and efficiency with Normalising Flows
2011.13445,2110.13632,2211.13630,2104.04543,...]

® High precision with Diffusion and Transformer models
2303.05376,2305.10475,2307.06836...]

e Key properties: conditional GANs and Transformers allow inversion of simulation

chain from detector back to parton level and methods like BNNs and classifiers

can be applied for error control [2305.07696...]

® Alternative approach OTUS (Optimal Transport based Unfolding and Simulation)

based on probabilistic auto encoders learns mapping from parton level Z to

reconstructed objects X without requiring paired event sampling (x,z) [2101.08944...]
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Previous ML Solutions

Howard et al 2101.08944



FROM PARTON TO DETECTORS AND BACK

Event reconstruction Detector & Particle level Parton level

P(D|&) = / d=p dzs dzpp(DIep) p(znlzs) plzs|2r) p(zp|d)

® Traditional analyses from reconstructed events to parton level lose some info
as they rely on binned data and "hand-crafted” observables

e Full likelihood intractable but access to it would yield unbinned, multi-varied
observables and optimal use of info depending on theory parameter



FROM PARTON TO DETECTORS AND BACK

Event reconstruction Detector & Particle level Parton level

P(D|d) = [ dzpdzsdzpp(Dl|zp)p(zplzs) p(zs|zp) p(zp|d)
Mcl)z:c\ftig i(e;a:{rlo Classifier Iransfer Function T_heory

(Normalising Flows

sampling Networks + Transformers)

0.18 -

® Traditional analyses from reconstructed events to parton level lose some info
as they rely on binned data and "hand-crafted” observables

o
p—t
(@)

e Full likelihood intractable but access to it would yield unbinned, multi-varied
observables and optimal use of info depending on theory parameter

normalized
(-]
et
N

® Matrix Element Method (MEM) builds likelihood using matrix elements from 0.12- %ansfermer
theory and transfer functions & allows to infer fundamental parameters of 0.104 —— Transfusion

directly from reconstructed events
= Transfer Function (from zp to zp) for the intractable part of the likelihood
= Classifier to parametrise acceptance probability
= Generative NN to integrate N
while using theory input for the parton level event [2310.07752,2210.00019...] Heimel et al 2310.07752




PARTICLE PHYSICS

MACHINE LEARNING PHENOMENOLOGY AND THEORY

® Uncertainty quantification

® Symmetries
“_ ® Interpretability

Part ||



(I) UNCERTAINTY QUANTIFICATION

® Modern Machine Learning essential in particle physics
phenomenology and theory and will be used more and
more in HEP theory chain

® Do these tools provide optimal and resilient results
including a comprehensive uncertainty treatment that
makes them both precise and accurate?

o — 3

N__

L. Heinrich
PhyStat: Statistics meets Machine Learning 2024
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PRECISION VS ACCURALY

v’ Precision X Precision X Precision v’ Precision
X Accuracy ’ Accuracy X Accuracy v/ Accuracy

® HEP can be at the forefront of development from
deterministic ML to probabilistic ML

Input X Beamal Fixed outputy
=m dll Probabilistic output p(y|x)

® Seen several approaches in a number of contexts:

bootstrapping, heteroscedastic losses, Bayesian Neural
Networks, Repulsive Ensembles, Posterior Sampling

® Key to understand various sources of uncertainties,
benchmark uncertainty quantifications, understand
dependence on priors, perform statistical tests
[VERaIPHY initiative - stay tuned!]



) SYMMETRY MEETS MACHINE LEARNING

Symmetries Machine Learning

® In physics we know that nature follows some symmetries (Lorentz-invariance, local gauge symmetries defining QFT...)

® HEP can provide a smart way to force theory into ML architecture (smart inductive bias)

® For example, Lorentz-equivariant transformers can provide appropriate internal or latent representation of the phase space
points x to NN in several contexts (regression, classification, generation...) by encoding Lorentz-equivariance into
architecture. [Brehmer et al 2305.18415, De Haan et al 2311.04774, Spinner et al 2405.14806, Brehmer et al 2411.00446]
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Amplitude regression § go --------- Event generation
— o ‘& — — '
GaEZEacd = \ « | g o Transformer Pl R4

= | --e-- MLP | =
& | — %~ Transformer 10—4 - — L-GATr
S psi >~ i
7 i
cé) . ~om GAP g_s 1.1 . E ._._:._m:_l-#

10 ...¥-- CGENN § E 1.0 e

] — L-GATIr 0.9 B ., o |
1076+ 163 ; ' 165 0 100
reco
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(1) SYMMETRY MEETS MACHINE LEARNING

Symmetries Machine Learning

® Discovery of a symmetry signifies the existence of a fundamental principle and manifests itself in the form of physical laws
and selection rules
® Detecting symmetries with neural networks is exciting frontier in theoretical physics, seminal efforts with classifiers and

Symmetry GAN explored as deep learning approach to discover symmetry [Betzler + Krippendorf 2002.05169, Krippendorf et al
2003.13679, Barenboim, Hirn, Sanz 2103.06115; Desai et al 2112.05722]

2000 2000 1.00)
1500- 1500-
1000 1000 (.75
500 500
: og T f:
S o e e = (.50
g | < g
—500 ~5001 © + =
~1000- ~1000- 0.25
~1500- ~1500-
— . — . T - . . .
202%000  ~1000 0 1000 2000 2925000  —1000 0 1000 2000 (.00 T
px [GeV] px [GeV] () () (2) 1 b = P A

Symmetry
Desai etal 2112.05722 Symmetry GAN Classifiers Barenboim, Hirn, Sanz 2103.06115
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1) INTERPRETABILITY

® Physicists want to understand and strive for simplicity and unity (Identity low-rank structures in high-dimensional datasets
J. Thaler @ PhyStat 2024]

® Not all problems require analytical formulae, in some cases numerical simulations and “black-box” NN outputs are fine as

ong as we qualitatively and quantitatively assess sources of statistical and systematic uncertainties
® But formulae help (e. g. better at extrapolation): symbolic regression combines benefits of ML and analytic formulas by

learning complex functions from low-level or high-dimensional data and expressing them analytically.
[Butter Plehn 2109.10414, Lu et al 2210.02184, Tsoi et al 2411.09851, Morales-Alvarado et al 2412.07839, Singireddy et al 2504.13289, Makke et al 2501.07123...]

® See also understanding of DNN using principles of QFT [2402.13321, 2408.00082...] or cosmological dynamics [Krippendorf,
Spannowsky 2202.11104...]

Differential cross section Example of expression tree and one mutation
Using PySR o6 = — Simulation _l.: 31*y *(x2+1) 2 31*y *(x2-1)
[Cranmer 2305.01 582] ' -E Simulation uncertainty [

a multi-population 0.060 1~ mmss—pR =
: : —-—-  Analytic eq.
evolutionary algorithm 0.055 - - |
that evaluates symbolic = S| ° ° Q ’
expressions, determine ' -
angular coefficients in 045- L]
oAt he oo : j @ 00 0O @0 @
LHC = .
T © & © C©

do/dcosf [pb]
-
-
S

~1.00 —0.75 —0.50 —0.25 0.00 025\ 050 0.75 1.00
cos @

Morales-Alvarado et al, arXiv 2412.07839 + 2506.xxxxXx
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CONCLUSIONS AND OUTLOOK

® Revolution of LHC physics through modern machine learning (ML) is happening right now!

* Modern Machine Learning combining regression, classification generation and conditional generation, are

beneficial in every step of theory predictions at the LHC.
Data quantity & of quality more advanced than in most of other contexts (control on systematic uncertainties

and correlations) gives labeled and well understood data, HEP perfect playground for ML

Frontiers
® Uncertainty quantification
® ML helps us make the most out of data: how to transition from data science to symbolic problems?

® FunSearch meets Theoretical Physics? Large Physics Model?

No time to talk about
® Exciting ML applications and development in lattice QCD
® ML and string theory

® Unfolding and specific parton level tools
[see for example 2504.18126, 2502.02670,2403.03245,2410.21611...]
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CONCLUSIONS AND OUTLOOK

® Revolution of LHC physics through modern machine learning (ML) is happening right now!

* Modern Machine Learning combining regression, classification generation and conditional generation, are

beneficial in every step of theory predictions at the LHC.
Data quantity & of quality more advanced than in most of other contexts (control on systematic uncertainties

and correlations) gives labeled and well understood data, HEP perfect playground for ML

Frontiers

® Uncertainty quantification
® ML helps us make the most out of data: how to transition from data science to symbolic problems?

® FunSearch meets Theoretical Physics? Large Physics Model?

No time to talk about AT e
® Exciting ML applications and development in lattice QCD = Gty

KEEP

® ML and string theory

— Alan Turing

® Unfolding and specific parton level tools = CALM
[see for example 2504.18126, 2502.02670,2403.03245,2410.21611...] | AND
"We can only see a short distance ahead, but we can see plenty there that needs to be done." | | MI:-AECX"'F::E



