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2= Al in Astrophysics is booming

* Finding and characterizing astrophysical objects
 Anomaly searches and alert systems
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2= Al in Astrophysics is booming

* Finding and characterizing astrophysical objects
 Anomaly searches and alert systems
» Telescope scheduling and design

* Foundation models, multimodal learning

* Large Language Models (LLMs), better search
systems, hypothesis generation
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Collection of surveys
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UNIVERSE
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Source: GitHub

........... =1 Path(inder

LLM enabled literature search

A map of the lands of
astronomy papers

lyer et al. 2024.
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https://github.com/MultimodalUniverse/MultimodalUniverse

3¢ Major challenges for Al applications in Science

As listed in The Dawes Review 10: The impact of
deep learning for the analysis of galaxy surveys
Huertas-Company & Lanusse 2022

Small labeled
datasets

Domain Shift Benchmarking
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https://arxiv.org/pdf/2210.01813

3¢ Major challenges for Al applications in Science

As listed in The Dawes Review 10: The impact of
deep learning for the analysis of galaxy surveys
Huertas-Company & Lanusse 2022

Small labeled

| want to train my Al model by | don’t datasets

have enough trustworthy labels?

Domain Shift Benchmarking
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3¢ Major challenges for Al applications in Science

As listed in The Dawes Review 10: The impact of
deep learning for the analysis of galaxy surveys
Huertas-Company & Lanusse 2022

Small labeled

| want to train my Al model by | don’t datasets

have enough trustworthy labels?

Can | train on simulations and apply

the model to my real data? Domain Shift Benchmarking
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3¢ Major challenges for Al applications in Science

As listed in The Dawes Review 10: The impact of
deep learning for the analysis of galaxy surveys
Huertas-Company & Lanusse 2022

Small labeled

| want to train my Al model by | don’t datasets

have enough trustworthy labels?

Can | train on simulations and apply

the model to my real data? Domain Shift Benchmarking
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3¢ Major challenges for Al applications in Science

As listed in The Dawes Review 10: The impact of
deep learning for the analysis of galaxy surveys
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Small labeled

| want to train my Al model by | don’t datasets

have enough trustworthy labels?

Can | train on simulations and apply
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3¢ Major challenges for Al applications in Science

As listed in The Dawes Review 10: The impact of
deep learning for the analysis of galaxy surveys
Huertas-Company & Lanusse 2022

Small labeled

| want to train my Al model by | don’t datasets

have enough trustworthy labels?

Can | train on simulations and apply

the model to my real data? Benchmarking
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2= Talk Outline

1. Domain Shift Problem

2. What can we do about it?
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3. Some Interesting Applications

4. Uncertainty Quantification (UQ)
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Domain Shift Problem



2= More Data - More problems

All areas of astro(physics) often need to create
model trained on simulated data, that also work
on real data!

DOMAIN SHIFT MicroBooNE

(neutrinos)

physics, wrong geometry, for simulations

[ VR £ M e } [ Computational constraints }
background levels

[ PEBEarEElams }{ Imperfect addition of } : llustris / Hubble

transients, errors, data . . .
i observational effects merging galaxies)
compression

Different detectors or
telescopes

Adams et al. (2019)
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CLASSIFY

2= Traditional ML

Regular Training

FIND AND REFINE
FEATURES

4

SIMULATED

IMAGES
+

LABELS

(NON)MERGER
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2= Traditional ML
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CLASSIFY

2= Traditional ML

FIND AND REFINE
FEATURES

(NON)MERGER

SIMULATED

IMAGES
+

LABELS
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2= Why do models fail?

Source Domain

Train the model
on source
dataset and find
the decision
boundary.
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2= Why do models fail?

Source Domain Target Domain

New domain is
shifted,
learned decision
boundary doesn’t
work.
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2= Why do models fail?

Source Domain Target Domain Domain Alignment
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Domain Shift Problem
What can we do about it?




2= Combining Datasets
DOMAIN ADAPTATION

Align data distributions in the latent space of the network by forcing the network
to find more robust domain-invariant features.
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& Combining Datasets
DOMAIN ADAPTATION

Align data distributions in the latent space of the network by forcing the network
to find more robust domain-invariant features.

Distance-based Adversarial methods Reconstruction-based
methods
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1 predictor G (-;6,)

%—J
()L,
()()j domain classifier G4(+;64)
r—%
N
feature )\llll or Gy(-105) (?} (?//t [

n |$ @ domain label d
()[,
Ganinet al. (2016) 90

Nk

Gretton et al. (2012)

Minimize the distance metric between two latent Using domain discriminators to encourage domain Data reconstruction as an auxiliary
distributions. confusion through an adversarial objective. task to ensure feature invariance.




& Combining Datasets
DOMAIN ADAPTATION

Align data distributions in the latent space of the network by forcing the network
to find more robust domain-invariant features.

Distance-based [ Adversarial methods } [ Reconstruction-based }
methods

&
2
<
o
O
@
<
i
[0 4
2
g
o
i
=l
w
Q
QO
<
!
<
2z
O
<
Z
=
0 4
i
TS

Works on unlabeled target domain!
Can be applied to new data, no need for
scientists to label anything.
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CLASSIFY

2% Training with Domain Adaptation

B

Domain Adaptation

FIND AND REFINE
FEATURES

SIMULATED
IMAGES

(NON)MERGER

LABELS

Testing the model

OBSERVED
IMAGES

s

Simulated Observed
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aF Latent Space Alignment

Source - lllustris Target - SDSS observations
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: This is how the network sees the data.
2D representation of network’s latent space.

Ciprijanovi¢ et al. 2020.
Ciprijanovic et al. 2021.




aF Latent Space Alignment

Source - lllustris Target - SDSS observations RegUIar Training
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Ciprijanovic et al. 2021.




3¢ Latent Space Alignment

Source - lllustris Target - SDSS observations E Domain Adaptation }

Up to 30% increase!

.accuracy
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Ciprijanovic et al. 2021.
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2% Where can we use it?

Any data, any task, any problem (within reason!)

~ / \
Source ( \ 4 A\
{elolize) Encoder
Decoder
- S/ Dense NN
P * CNN
) N GNN CNN
Target
(some or \ )
not labels) F/
) J L J
4 )
Distance-based
DOMAIN Adversarial
ADAPTATION Reconstruction-based
\_ J
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Classification
Inference

Dense NN Similarity search
N. Flows Anomaly detection

Segmentation
Data Generation
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2% Where can we use it?

Any data, any task, any problem (within reason!)
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Some interesting applications




3¢ SIDDA: Sinkhorn Dynamic Domain Adaptation

Can we perform automated domain alignment and avoid
time-consuming hyperparameter tuning?

&
=
<
o
O
m
<
|
o
=
<
04
L
]
1T
Q
Q
<
—
<
Z
o
%
=
=
o
]
T




3¢ SIDDA: Sinkhorn Dynamic Domain Adaptation

Can we perform automated domain alignment?

dxn_agql_c_s_nr_llfl_lqr_n _______ dynamically weighted loss ()
« Trainable scaling of the S°“°CD°'?’T ;aeocmaxnz, 21l T £7 #:CE@,,@) +217£DA(Z 2*) + log(|mn2)
main task loos and DA loss. f .................... 5 :

distance measure be. source domain logits y
* No tuning needed!

 Trainable Sinkhorn plan i.e., _— \
how detailed should the ( 5 i

Images CHN; MLP Model Outputs
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Source: Charpentier 2024.

ﬁ OPTIMAL TRANSPORT:
Finding the “most efficient” transportation plan p that
minimizes the total transportation cost ¢ of moving the
entire mass from probability « distribution to /.




3¢ SIDDA: Sinkhorn Dynamic Domain Adaptation

Can we perform automated domain alignment?

Circle Rectangle

Elliptical

- Trainable scaling of the Source
main task loos and DA loss. o
* Trainable Sinkhorn plan i.e.,

how detailed should the
distance measure be. 4
 No tuning needed!

Voetberg et al. 2025

Star
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U p to 40 0/ better accuracy Barred Spiral Edge-On Disk Featured Smooth Cigar Smooth Round Unbarred Spiral
¢ (]
on unlabeled data. Galaxy Zoo
Pandya et al. 2025.
- . . . . .
DESI




3¢ Cosmology with Graphs

Roncoli et al. 2023.

Can we correctly predict cosmology across
different cosmological simulations?

IT1lustrisTNG

FERMINATIONAL ACCELERATORL/

Magneticum



3¢ Cosmology with Graphs

Roncoli et al. 2023.
Can we correctly infer cosmology across different simulations?

Graph Neural Networks:
ideal for sparse
~galaxy catalogs!
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3¢ Cosmology with Graphs

Roncoli et al. 2023.

Can we correctly infer cosmology across different simulations?

Graph Neural Networks:
ideal for sparse
~galaxy catalogs!

&
=
<
o
O
m
<
|
o
(@)
s
w
]
1T
O
Q
<
—
<
Z
o
<
=
=
o
]
T

AL
b
! Cosmology from
Simulations
. .
¢ .
, , ‘o & o
5 "
)y ol 4‘ Py ! .
' %
—" VERA C._ RUBIN
o 5 4
s
<
T +.0 »
.
Graph Layers ) Cosmology from
" Observations
g -~ ’
' L
. -
. A

Model Interpretability




3¢ Cosmology with Graphs

Can we correctly infer cosmology across different simulations?

Graph Neural Networks:
ideal for sparse
galaxy catalogs!
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Training in SIMBA, testing in SIMBA

NeurlPS 2023.
Roncoli et al. 2023.
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& Strong gravitational lensing

Can we infer strong lensing parameters (Einstein radius,
ellipticity, position/offset) robustly in both simulated and
real data?

Source - Clean Target - DES

FERMINATIONAL ACCELERATORLABORATORY



& Strong gravitational lensing

Infer Einstein radius, ellipticity, position/offset

Source Target

. . . . a. 100k images (1-filter)
with and without noise

b. Latent distributions
are correctly
aligned.

c. Differences between
true values and
predicted posteriors
are small. Accuracy
improves up to 2
orders of magnitude.
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Swierc et al. 2024.




Infer Einstein radius, ellipticity, position/offset

Source Target

NPE-only

& Strong gravitational lensing

NPE-UDA

[ Source Data
Target Data

a.

100k images (1-filter)
with and without noise
Latent distributions
are correctly
aligned.

Differences between
true values and
predicted posteriors
are small. Accuracy
improves up to 2

orders of magnitude.

Swierc et al. 2024.
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& Strong gravitational lensing

SBI - infer Einstein radius, ellipticity, position/offset

Source Target NPE-only NPE-UDA

[ Source Data
Target Data
ah,
X
(c) i
A

—— NPE-only (Target)
—— NPE-UDA (Target)

—— NPE-UDA (Source)

2.75

100k images (1-filter)
with and without noise
Latent distributions
are correctly
aligned.

Differences between
true values and
predicted posteriors
are small. Accuracy
improves up to 2

orders of magnitude.

Swierc et al. 2024.
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Uncertainty Quantification (UQ)




3£ Sources of uncertainties

Data Model Distributional

All of this will influence
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3£ Sources of uncertainties

All of this will influence
model parameters and
model outputs!

Systematic

persistent bias

from instruments, calibration, or
imperfect theory

Statistical
variation due to limited data

Epistemic
model or data-driven uncertainty

Aleatoric
irreducible noise in the data

These vocabularies are
not interchangeable!

Data

Model

Distributional

@ Training data @ Training data @ Training data
=~ Underlying Data High data ___ Underlying Data High madel ___ Underlying Data
Generator uncertainty T Generator uncertainty - Generator
- ~= Model 1 7 -
— Mode| 2 7 i
Out of Out of
- distribution distribution
Medel 1
v
/‘]
Low data Low model
uncertainty uncertainty Model 2

@ Training data class 1
@ Training data class 2

Gawlikowski et al. 2023.

@ Training data class 1
@ Training data class 2

High model
uncertainty

~— Model 1
— Model 2

Low model d
uncertainty

@ Training data class 1
@ Training data class 2

@ Out of distribution test
data
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2= Prediction / Inference with UQ

The way we think about Al models
and UQ is and should be evolving.
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2= Prediction / Inference with UQ

The way we think about Al models
and UQ is and should be evolving.
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2= Prediction / Inference with UQ

The way we think about Al models [

and UQ is and should be evolving. MVE /7 BNN ]

Inference

with UQ
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Point prediction
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2= Prediction / Inference with UQ

The way we think about Al models [ Neural Density Estimator ] ®
| . } . | . -
and UQ is and should be evolving. ’ ot predieton
Normalizing Flows ﬁ
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Taking the next step in UQ
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2= Taking the next step in UQ

Aligning Intent and Implementation in UQ for ML
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2= Taking the next step in UQ

Aligning Intent and Implementation in UQ for ML
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Improving UQ in scientific ML does not require solving foundational questions in the philosophy
of science. But it does require practical discipline: defining what is being estimated, justifying the
uncertainty attached to it, and validating whether that uncertainty supports the decisions or claims
it is meant to inform. We advocate for this kind of epistemic hygiene—not as a constraint, but as
an enabling structure. The payoff is not just cleaner semantics, but more decisive modeling. By
aligning estimation targets with uncertainty constructs and validation tools, we enable models to play
a trustworthy role in scientific inference—making uncertainty a vehicle for insight, not confusion,
and supporting the kind of transparent, cumulative progress that scientific ML now urgently demands.

Trivedi & Nord 2025. arXiv:2506.03037
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Aligning Intent and Implementation in UQ for ML

* Declare the inference chain

the estimation target, the loss or decision goal, the
uncertainty construct and what it means.

« Match UQ method to context

what is the uncertainty is meant to support
(forcasting, control, hypothesis testing)

» Check both forward and inverse validity
in data and parameter space

* Use the simulator as an instrument
not just to train, but to test: perturb parameters and
measure UQ behavior

- Benchmark beyond IID

domain shifts

» Study model stability

sensitivity to dataset realizations, initialization seeds -
stability is a proxy for epistemic trustworthiness
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Trivedi & Nord 2025. arXiv:2506.03037




e Era of big astro surveys - large
amount of data but not all of it
labeled.

e Simulations and old data are
different - domain shift
problem!

e Domain Adaptation can help
but:

o we need more work related to
model interpretability;

O better understanding of data and
model errors;

o correctly choose UQ metric for a
given type of task.

Small labeled
datasets

Benchmarking

Domain Shift
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Uncertainty
estimation

Interpretability




e Era of big astro surveys - large
amount of data but not all of it
labeled.

e Simulations and old data are
different - domain shift
problem!

e Domain Adaptation can help
but:

o we need more work related to
model interpretability;

O better understanding of data and
model errors;

o correctly choose UQ metric for a
given type of task.

THANK YOU!

aleksand@fnal.gov

Small labeled
datasets

Domain Shift Benchmarking

Uncertainty
estimation

Interpretability
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