
Jennifer Ngadiuba (Fermilab)
EuCAIfCon 2025
Cagliari, Italy
June 16–20, 2025

FastML Lab

AI at Colliders: From Real-Time Decision
Making to Data-Driven Discovery

Big Science in 21st century

2

Probing the fundamental structure of nature
requires complex experimental devices, large infrastructures
and big collaborations.

The Large Hadron
Collider

LIGO/VIRGO interferometers

Vera C. Rubin Observatory The DUNE neutrino experiment

Big Science = Big Data
• Increasingly complex data both in volume and

dimensionality

• Increasing need for efficient and accurate data
processing pipelines

• Challenge in simulating expectations for what
experiments may observe

• But also need for innovative data & discovery
driven physics analyses approaches

3Sloan Digital Sky Survey Interactions in LArTPC A LHC collision

https://a3d3.ai/

4

A c
oll

isio
n

Collision frequency: 40 MHz
Particles per collision: O(103)
Detector resolution: ~ 1B channels

Extreme data rates of ~Pb/s!

Big Data @ the Energy Frontier
The Large Hadron Collider (LHC)

5

H
ow

 o
ft

en
 it

 is
 p

ro
du

ce
d
→

B
ecom

ing m
ore and m

ore rare →

NEW PHYSICS!

Collisions which produce interesting products (ex: Higgs boson)
are typically very rare

The probability of producing a Higgs boson is 5-9 orders of magnitude smaller
than producing only jets

not interesting

very interesting

SMP-23-004

Data reduction workflow @ LHC

6

On-detector ASIC
compression
~100 ns latency

CMS Experiment
40 MHz collision rate
~1B detector channels

Pb/s
40 MHz

FPGA filter stack
~μs latency

10s Tb/s
100s kHz

On-prem CPU/GPU filter farm
~100 ms latency

10s Gb/s
~5 kHz

Worldwide
computing grid
Exabyte-scale
datasets

Level-1
Trigger

High-Level
Trigger

Offline
analysis

Data reduction workflow @ LHC

7

On-detector ASIC
compression
~100 ns latency

CMS Experiment
40 MHz collision rate
~1B detector channels

Pb/s
40 MHz

FPGA filter stack
~μs latency

10s Tb/s
100s kHz

On-prem CPU/GPU filter farm
~100 ms latency

10s Gb/s
~5 kHz

Worldwide
computing grid
Exabyte-scale
datasets

Level-1
Trigger

High-Level
Trigger

Offline
analysis

Data reduction workflow @ LHC

8

On-detector ASIC
compression
~100 ns latency

CMS Experiment
40 MHz collision rate
~1B detector channels

Pb/s
40 MHz

FPGA filter stack
~μs latency

10s Tb/s
100s kHz

On-prem CPU/GPU filter farm
~100 ms latency

10s Gb/s
~5 kHz

Worldwide
computing grid
Exabyte-scale
datasets

Level-1
Trigger

High-Level
Trigger

Offline
analysis

Data reduction workflow @ LHC

9

On-detector ASIC
compression
~100 ns latency

CMS Experiment
40 MHz collision rate
~1B detector channels

Pb/s
40 MHz

FPGA filter stack
~μs latency

10s Tb/s
100s kHz

On-prem CPU/GPU filter farm
~100 ms latency

10s Gb/s
~5 kHz

Worldwide
computing grid
Exabyte-scale
datasets

Level-1
Trigger

High-Level
Trigger

Offline
analysis

Data reduction workflow @ LHC

10

On-detector ASIC
compression
~100 ns latency

CMS Experiment
40 MHz collision rate
~1B detector channels

Pb/s
40 MHz

FPGA filter stack
~μs latency

10s Tb/s
100s kHz

On-prem CPU/GPU filter farm
~100 ms latency

10s Gb/s
~5 kHz

Worldwide
computing grid
Exabyte-scale
datasets

Level-1
Trigger

High-Level
Trigger

Offline
analysis

Make physics discoveries with
0,0025% of the events!

(the rest is lost…)

The role of AI
• Machine Learning is used in particle

physics since the ‘80s

- it was shallow networks back then

• Over the last decade a rapid progress
guided by technological breakthrough
led to a revolution in this area

- this the era of Deep Learning

11

Machine learning
in

particle physics

Represen-
tations/

Architectures

Jet imagesEvent
images

Sequences

Trees

Graphs

Sets (point
clouds) Equivariant

models

Physics-
inspired

Classification

Param-
etrized

classifiers

TargetsJet tagging

BSM
physics

Particle
identification

Cosmology,
astro-, and
cosmic-ray

physics

Neutrino
detectors

Direct dark
matter

detectors

Learning
strategies

Un-
supervised

Weak/semi-
supervised

Hyper-
parameter

opti-
mization

Reinforce-
ment

learning Quantum
machine
learning

Feature
ranking

Attention

Regular-
ization

Optimal
transport

Fast
inference

Hardware-
aware

learning

Deployment

Firmware/
software

Knowledge
distillation

Regression

Pileup

Calibration

Recasting

Matrix
elements

Parton
distribution
functions

Lattice
guage
theory

Function
approx-
imation

Symbolic
regression

Decorrelation
methods

Adversarial
training

Quantile
regression

Generative
modeling
/ density

estimation
Diffusion
models

Mixture
models

Phase
space

generation

Gaussian
processesGenerative

adversarial
networks

Anomaly
detection

Normalizing
flows

Auto-
encoders

Simulation-
based

inference

Parameter
estimation

Unfolding

Domain
adaptation

BSM
physics

Diff-
erentiable
simulation

Uncertainty
quantification

Inter-
pretability

Estimation

Mitigation

Uncertainty-
aware

learning

https://iml-wg.github.io/HEPML-LivingReview/

Deep Learning @ LHC

12

DL for classification:

heavy jet tagging
heavy flavour jet tagging

exotic jets
tau leptons
event level

DL beyond classification:

mass and energy regression
background estimation

simulation-based inference
inverse problems/unfolding

anomaly detection
uncertainty quantification

reconstruction & simulation
triggering

Computing software & hardware for DL:
optimized inference in central software for CPU/GPU
GPU hardware on-site for software trigger system & grid sites
more powerful chips in hardware trigger system & development of portable tools
ML-friendly central data format and scalable processing tools

In this talk, my personal choice of highlights (efforts I actively contribute to)
…there is a lot more ongoing!

Anomaly detection in a nutshell

13

Machine learning based anomaly detection algorithms can
be used to look at our data without model assumptions

Main idea: learn directly from data how the standard
model looks like
⇒ eliminate signal priors and search for anything

anomalous wrt standard model

14
Increasing model dependence

How to train an AI algorithm
to identify anomalous

events?

Learn to understand
regular events →
look for outliers

Try to separate
two groups of events →

learn to identify anomalies

Weakly-supervisedUnsupervised

Encode a prior of
potential anomalies →

look for similar

Semi-supervised

Anomaly detection in action!

15

• Inject anomalies of varying production rate (cross section) in background simulation and
calculate discovery sensitivity metric (p-value)

• Obtain comparison of sensitivity of different methods against standard analysis methods

CMS-EXO-22-026

traditional
dijet search

dedicated search
for this signal

anomaly detection
methods

Higher discovery
probability!

Apply to LHC data!

16

Anomaly detection in action
… but no discovery quite yet…

Data reduction workflow @ LHC

17

On-detector ASIC
compression
~100 ns latency

CMS Experiment
40 MHz collision rate
~1B detector channels

Pb/s
40 MHz

FPGA filter stack
~μs latency

10s Tb/s
100s kHz

On-prem CPU/GPU filter farm
~100 ms latency

10s Gb/s
~5 kHz

Worldwide
computing grid
Exabyte-scale
datasets

Level-1
Trigger

High-Level
Trigger

Offline
analysis

99.75% events
rejected!

99% events
rejected!

IS NEW PHYSICS EVEN THERE?
event filtering starts very early in the data processing

Data reduction workflow @ LHC

18

On-detector ASIC
compression
~100 ns latency

CMS Experiment
40 MHz collision rate
~1B detector channels

Pb/s
40 MHz

FPGA filter stack
~μs latency

10s Tb/s
100s kHz

On-prem CPU/GPU filter farm
~100 ms latency

10s Gb/s
~5 kHz

Worldwide
computing grid
Exabyte-scale
datasets

Level-1
Trigger

High-Level
Trigger

Offline
analysis

99.75% events
rejected!

99% events
rejected!

Addressing the challenge as
early as possible in the data
reduction workflow!

Data reduction workflow @ LHC

19

On-detector ASIC
compression
~100 ns latency

CMS Experiment
40 MHz collision rate
~1B detector channels

Pb/s
40 MHz

FPGA filter stack
~μs latency

On-prem CPU/GPU filter farm
~100 ms latency

10s Gb/s
~5 kHz

Worldwide
computing grid
Exabyte-scale
datasets

Level-1
Trigger

High-Level
Trigger

Offline
analysis

10s Tb/s
100s kHz

One of the challenges today is to bring
complex deep learning models to the
extreme environments closer to the

data source!

Industry tools typically suboptimal…

20

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#������

$

� ��������� ������
�����������

�� �����������

�����
�������

�����
���!������

��������������������

� ���������"����
������

�����

� ���	���
����"����"������"

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

Catapult

Bring ML models to hardware for real-time AI

high level synthesis for machine learning

Many use cases in HEP and beyond… and still growing!
(see Fast Machine Learning For Science Workshop Oct '24)

https://fastmachinelearning.org/hls4ml/

A tool to efficiently program the FPGA hardware for Neural Networks
with experimental constraints in mind!

pip install hls4ml

Neural Network inference on FPGA

21

Neural network inference
=

matrix multiplication

Efficient implementation on FPGA uses
DIGITAL SIGNAL PROCESSORS

There are about 5–10k DSPs in modern
FPGAs!

ex: Xilinx Virtex Ultrascale +

Make the model fit on one chip

22

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

Make the model fit on one chip

23

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Make the model fit on one chip

24

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Reuse: allocate resources for each
operation (run all network in one
clock) vs spread calculation across
several clock cycles

Javier Duarte I hls4ml

Network Tuning: Parallelization

!15

related to the Initiation Interval = when new inputs are introduced to the algo.

• ReuseFactor: how much to parallelize

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

more parallelization → more resources

Make the model fit on one chip

25

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Reuse: allocate resources for each
operation (run all network in one
clock) vs spread calculation across
several clock cycles

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Make the model fit on one chip

26

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Reuse: allocate resources for each
operation (run all network in one
clock) vs spread calculation across
several clock cycles

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Quantization-aware
training

27

• Post-training quantization can affect accuracy

- for a given bit allocation, the loss minimum at
floating-point precision might not be
the minimum anymore

• One could specify quantization while look
for the minimum

- maximize accuracy for minimal FPGA resources

• Workflow: quantization-aware training with
Google QKeras and firmware design with
hls4ml for best NN inference on FPGA
performance

C. N. Coelho et al.: Nature Machine Intelligence, Volume 3 (2021)

Ultra-fast anomaly detection @ CMS

28

Learn typicality: by training on unbiased dataset
CMS establishing a new trigger

paradigm with sub-μs autoencoders
for anomaly detection!

From calorimeter and muon trigger system:

Objects: 10 jets, 4 muons, e/𝛄, MET

Features: pT, η, ϕ (in raw integer values)
Architecture: MLP

Low-level inputs: aggregated calorimeter towers
Architecture: 2D CNN w/ knowledge distillation
[CMS-DP-2023-086]

anomaly score

Ultra-fast anomaly detection @ CMS

29

CMS-DP-2023-079
CMS-DP-2024-059

Online since
Spring ’24!

Most anomalous event!

Otherwise
untriggered

events!

Full analysis and
interpretation of dataset
ongoing… stay tuned!

Anomaly eXtraction Online Level-1 Trigger aLgorithm

The HL-LHC challenge: CMS Phase 2
At HL-LHC, up to 200 pile-up interactions: CMS is upgrading the L1T and HLT to enable

the same physics program we are doing now (at @60 PU)

30

Muon detectors

Calorimeters40 MHz tracking!

40 MHz
particle flow!

* input data from 2 Tb/s to 63 Tb/s
* latency of 12.5μs to take decision

CMS-TDR-021

The HL-LHC challenge: CMS Phase 2

31

At HL-LHC, up to 200 pile-up interactions: CMS is upgrading the L1T and HLT to enable
the same physics program we are doing now (at @60 PU)

With significantly more powerful compute we expect ML to be well
embedded into L1T to exploit higher information granularity:

Around 20 projects (NNs, BDTs) in development accounting for 25
billion ML inferences per second

Credits: Sioni Summers (CERN)

Finding the best NN architecture
• At offline level: chose the architecture with highest accuracy even if not efficient…

• Current SOA is particle-based transformers — learn which neighbour particles are
relevant through attention mechanism

- input embedding of both single particle and pair-wise features information

- the pair-wise features encode physics principles → modifiers of standard dot-product
attention weights in Particle Attention Block

32
H. Qu et al.: arXiv.2202.03772

• A foundation model is a large ML model trained on a vast quantity of data such that it
can be adapted to a wide range of downstream tasks (e.g., BERT, GPT, …)

- self-supervised learning: use the data itself to create training objective

- outputs: powerful representations usable in other tasks

Towards foundation models in HEP

33

reusable — one backbone used for several tasks

train on huge real data – leverage experimental data

leverage multi-modal methods – combine data from different detectors to address more complex tasks

uncertainty reduction – reduce dependence on simulation-based training

from M. Kagan at H&N 2023

Towards foundation models in HEP

34

Contrastive Learning:
Symmetry Augmentation

Dillon, Kasieczka, Olischlager
Plehn, Sorrenson, Vogel, 2108.04253

Masked Particle
Type Prediction

Kishimoto, Morinaga, Saito
Tanaka, 2312.06909

Masked Particle
Modeling

Golling, Heinrich, Kagan, Klein,
Leigh, Osadchy, Raine,

2401.13537

Leigh, Klein, Charton, Golling,
Heinrich, Kagan, Ochoa, Osadchy,
2409.12589

Next Token Prediction

Birk, Hallin, Kasieczka, 2403.05618

Contrastive Learning:
Re-Simulation

Harris, MK, Krupa, Maier, Woodward,
2403.07066

Supervised Pre-training
and Joint Optimization

Vigl, Hartman, Heinrich, 2401.13536

Supervised Classification
and Generation

Mikuni, Nachman 2404.16091

Large-Scale Fine-Grained
Classification

Li, Li, et al. 2405.12972

Towards foundation models in HEP
• Two steps training:

- Pre-training gives better performance and can use less data on downstream Tasks

- Also shown better domain adaptation properties → robustness

35

Golling, Heinrich, Kagan, Klein,
Leigh, Osadchy, Raine,

2401.13537

Pre-training models for anomaly detection
• Contrastive learning is a self-supervised learning (SSL) technique that aims to learn

representations by comparing similar and dissimilar samples (called “augmentations”)

- can learn powerful latent representation for anomaly detection

• Downstream: usual unsupervised clustering techniques (e.g., autoencoders)

• Two approaches:

- self supervised: augmentation by masking

- supervised: augmentation by label

36

2502.15926

Finding the best NN architecture

37

90 ns inference time
73% accuracy on jet tagging

16 jet level features

• Many offline applications moving to SOA
transformer architectures → not trivial mapping of
MHA to FPGA circuit

- attention map requires N2 computations

- softmax in those computation is slow and expensive

- large weights matrices easily saturate memory

• First vanilla solutions for HEP being explored
recently

• Expect more R&D in this direction in the near
future

- e.g., alternative architectures, aggressive
quantization and pruning of weights and/or
attention scores, state space models, …

Wayne Luk, et al.

Finding the best NN architecture
• At offline level: chose the architecture with highest accuracy even if not efficient…

• For edge applications this is not an option: crucial to co-design the architecture with the
application and its constraints

38

Graph NNs at
O(100) ns latency!

MLP

DS

IN

arXiv.2402.01876

8 bits

More aggressive quantization
• Solution: optimize the individual bitwidths alongside the NN accuracy using gradient

descent

• How:

- treat the bitwidths as continuous variables

- introduce surrogate gradients for discrete variables
such as bitwidths

- introduce a novel on-chip resource consumption metric
that when incorporated into the loss function penalizes
larger bitwidths efficiently

- pruning integrated naturally in the optimization step
(gradient descent reduces certain bitwidths to zero)

39

Paper on arxiv ready for
submission!

Fully supported
in hls4ml!

increase
penalization

HGQ still better than QKeras

Finding the best NN architecture

40

• Also found more recently that MLP-mixer
architecture can further enhance
performance

• Processes sets (like particle clouds
or jet constituents) using only
MLPs and alternates between two
key components:

- Token-mixing MLP
– mixes information across particles (rows),

- Channel-mixing MLP
– mixes features within each particle (columns)

• Not naturally permutation-invariant
→ not necessarily needed for
ordered sets (as in the trigger)
→ enables it to learn which features
to retain and which to discard,
facilitating HGQ

2503.03103

Finding the best NN architecture
• Also found more recently that MLP-mixer

architecture can further enhance
performance

• Processes sets (like particle clouds
or jet constituents) using only
MLPs and alternates between two
key components:

- Token-mixing MLP
– mixes information across particles (rows),

- Channel-mixing MLP
– mixes features within each particle (columns)

• Not naturally permutation-invariant
→ not necessarily needed for
ordered sets (as in the trigger)
→ enables it to learn which features
to retain and which to discard,
facilitating HGQ

41

2503.03103

AI @ Extreme Edge

42

On-detector ASIC
compression
~100 ns latency

CMS Experiment
40 MHz collision rate
~1B detector channels

Pb/s
40 MHz

FPGA filter stack
~μs latency

10s Tb/s
100s kHz

On-prem CPU/GPU filter farm
~100 ms latency

10s Gb/s
~5 kHz

Worldwide
computing grid
Exabyte-scale
datasets

Level-1
Trigger

High-Level
Trigger

Offline
analysis

ASICs typically used at the front end for sensors
read out: directly embed ML in here to allow
intelligent data compression at the very edge

43

Novel technology for future CMS endcap calorimeter:
50 layers with unprecedented number of readout channels (6M)!

CMS HGCAL TDR
43

Example:
High-granularity calorimeter @ HL-LHC

43

Novel technology for future CMS endcap calorimeter:
50 layers with unprecedented number of readout channels (6M)!

CMS HGCAL TDR
43

Example:
High-granularity calorimeter @ HL-LHC

Not enough bandwidth and latency to readout
and put together all these channels downstream!

44

One module = 432 sensors

Example: CMS HG calorimeter

44

One module = 432 sensors

ASIC

ASIC

ASIC

Compress data on sensor in ASIC:

High radiation
Cooled to -30 C → low power
O(100) ns latency

Encode to N bits
on ASIC with NN

Example: CMS HG calorimeter

44

One module = 432 sensors

ASIC

ASIC

ASIC

Compress data on sensor in ASIC:

High radiation
Cooled to -30 C → low power
O(100) ns latency

Encode to N bits
on ASIC with NN

Transmit encoded data

Reconstruct or do latent space
analysis on downstream

processors (FPGAs)

Example: CMS HG calorimeter

AI @ Extreme Edge: HGCAL
• Tiny and heavily quantized NN —> low latency (50 ns) & low power (2.4 nJ/inf)

• NN IP block created for the ASIC with Catapult HLS (Mentor/Siemens) and hls4ml

- NN architecture is fixed, weights can be reprogrammed over I2C

- NN parameters (weights and biases) triplicated for radiation tolerance → 200% overhead

• Developed in parallel a tool — FKeras — that performs bit-level sensitivity study of each
weight in the NN

- allows to prioritize which bits need protection and which may be safely disregarded,
reducing resource overhead

45

AI @ Extreme Edge: Smart Pixels
• Challenge: unable to read pixel detector for real time analysis because of too high

granularity

• Solution: use cluster shape to
extract incident angle of particle
traversing pixel sensors
→ distinguish low pT from
high pT charged particles and
select only high pT ones

• Can be done with a NN implemented
on sensor with the hls4ml+Catapult
bundle!

• Found data reduction by 54.4% - 75.4%
with low latency (3.9 ns) and
low power (300 μW/cm2)

• Prototype 1.5mm2 ASIC with momentum filtering NN in 28nm CMOS has been
fabricated and tests are in progress

46

Yoo et al 2024 Mach. Learn.: Sci. Technol. 5 035047

arXiv.2406.14860

Adaptability and robustness

47

• One of the challenges in both real-time and offline workflows is adaptability and
robustness to external conditions → improve domain adaptation & thus uncertainty
quantification

- offline: mostly driven by data/simulation disagreement → rely on already robust offline
reconstruction (updated ~ once per year)

- online: less robust reconstruction and changes on the scale of seconds to days / few weeks

• Possible approaches (not mutually exclusive) under active R&D:

- robust pre-training strategies

- continual learning (e.g., top up trainings)

- agent-based for autonomous adjustments
(e.g., through reinforcement/active learning)

- establishing MLOps pipelines: train, deploy,
maintain

Example: continual learning for
CMS Phase 2 tracker degradation

[CMS-DP-2023-022]

48

• We hope to understand the fundamental
structure of nature

- we expect new phenomena to answer
those questions

- but these are rare so we build large scale
experimental setups

• The challenge ahead is big
- more data, more complex data, not

enough resources

• This is why we need to push ML to all
pipelines down to the edge

- to do more with less (faster & better)

• And hopefully discover new phenomena!

Summary

Backup

What are FPGAs?

50

FPGA diagram

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development
Some early adaptions of ML techniques in trigger [1]
FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Field Programmable Gate Arrays
are reprogrammable integrated circuits

Contain many different building blocks
(‘resources’) which are connected together as you
desire

51

Logic cell

Flip-flop

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development
Some early adaptions of ML techniques in trigger [1]
FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Look-up
table
(logic)

(registers)

Look Up Tables (LUTs) perform arbitrary
functions on small bitwidth inputs (2-6 bits)
→ used for boolean operations,
arithmetics, memory

Flip-flops register data in time with the clock pulse

Field Programmable Gate Arrays
are reprogrammable integrated circuits

What are FPGAs?

FPGA diagram

52

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development
Some early adaptions of ML techniques in trigger [1]
FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Also contain embedded components:

Digital Signal Processors (DSPs): logic
units used for multiplications

DSPs are specialized units for multiplication and
arithmetic
→ faster and more efficient than LUTs for these
type of operations
→ for deep learning, they are often the most
precious resource

Field Programmable Gate Arrays
are reprogrammable integrated circuits

What are FPGAs?

FPGA diagram

53

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development
Some early adaptions of ML techniques in trigger [1]
FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Also contain embedded components:

Digital Signal Processors (DSPs): logic
units used for multiplications

Random-access memories (RAMs):
embedded memory elements

Field Programmable Gate Arrays
are reprogrammable integrated circuits

BRAMs are small, fast memories (ex, 18 Kb each)

→ more efficient than LUTs when large memory is
required

Modern FPGAs have ∼100 Mb of BRAMs,
chained together as needed

What are FPGAs?

FPGA diagram

54

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development
Some early adaptions of ML techniques in trigger [1]
FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

Also contain embedded components:

Digital Signal Processors (DSPs): logic
units used for multiplications

Random-access memories (RAMs):
embedded memory elements

Field Programmable Gate Arrays
are reprogrammable integrated circuits

Contain array of logic cells embedded with DSPs,
BRAMs, etc.

Support highly parallel algorithm implementation

Low power per Op (relative to CPU/GPU)

What are FPGAs?

FPGA diagram

Why are FPGAs fast?

55

• Fine-grained / resource parallelism

- use the many resources to work on different
parts of the problem simultaneously

- allows us to achieve low latency

• Most problems have at least some sequential
aspect, limiting how low latency we can go

- but we can still take advantage of it with…

• Pipeline parallelism

- instruct the FPGA to work on different data
simultaneously

- allows us to achieve high throughput

Like a production line for data…

How are FPGAs programmed?

56

Hardware Description Languages

HDLs are programming languages which describe
electronic circuits

High Level Synthesis

generate HDL from more common C/C++ code

pre-processor directives and constraints used to
optimize the timing

drastic decrease in firmware development time!

See Xilinx Vivado HLS, Intel HLS, Catapult HLS

Neural Network inference on FPGA

57

Neural network inference
=

matrix multiplication

Efficient implementation on FPGA uses
DIGITAL SIGNAL PROCESSORS

There are about 5–10k DSPs in modern
FPGAs!

ex: Xilinx Virtex Ultrascale +

Make the model fit on one chip

58

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

Fully parallelized
(max DSP use)

compression

70% compression ~ 70% fewer DSPs

Number of DSPs available

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

Quantization-aware training

59

• Post-training quantization can affect accuracy

- for a given bit allocation, the loss minimum at floating-point precision might not be
the minimum anymore

• One could specify quantization while look for the minimum during training

- quantization functions
applied to weights and activations
only in the forward pass

- use Straight Through Estimator
for back propagation step

• Our workflow: quantization-aware
training with Google QKeras and
firmware design with hls4ml
for most efficient NN inference
on chip!

A. Gholami et al, arxiv.2103.13630

High-Granularity Quantization
• The wish: squeeze even more NN inference performance when each parameter in the

network may have its unique bitwidth

• Limitations of QKeras:

- bitwidths for NN parameters are optimized in predefined, structured block (e.g., per layer)

- bitdiwdth is not part of optimization
→ need to run your own
hyperparameter scan

• Solution: optimize the individual
bitwidths alongside the NN accuracy
using gradient descent

60

Other quantization methods

• mixed-precision quantization tool
written for PyTorch

• main idea: sensitive layers are kept
at higher precision than less sensitive
layers

• problem: search space is exponential
to the number of layers in models

• solution: use ILP to find the optimal trade-off between model perturbation (through
Hessian trace) and application-specific constraints (latency, BOPs, size limit,...)

• Scales linearly w.r.t to the number of layers and bitwidth options

61

HAWQ — Hessian AWare Quantization

arxiv.2011.10680

Efficiency beyond quantization

62

Knowledge distillation

• Allows to deploy smaller student NN at
similar accuracy of more complex
teacher NN

• And to transfer powerful inductive bias
to the student NN

Symbolic regression

• Trained with gradient-based approach can
achieve high sparsity and compact
representation

• Mathematical operations can be
implemented efficiently in HLS with LUTs

arxiv.2401.09949

Fast autoencoders for anomaly detection

• If variational, define anomaly metric in latent space →
deploy only encoder in inference → half latency and
model size

• Informed latent representations can lead to more
efficient model → SSL and compact foundation models/
transformers

arxiv.2311.14160

arxiv.2406.16752

arxiv.2311.17162, 2401.08777, 2108.03986

High-Granularity Quantization
• Solution: optimize the individual bitwidths alongside the NN accuracy using gradient

descent

• How:

- treat the bitwidths as continuous variables

- introduce surrogate gradients for discrete variables
such as bitwidths

- introduce a novel on-chip resource consumption metric
that when incorporated into the loss function penalizes
larger bitwidths efficiently

- pruning integrated naturally in the optimization step
(gradient descent reduces certain bitwidths to zero)

63

Paper on arxiv ready for
submission!

Fully supported
in hls4ml!

increase
penalization

HGQ still better than QKeras

QKeras & hls4ml

64C. N. Coelho et al.: Nature Machine Intelligence, Volume 3 (2021)

Matches ap_fixed exactly!
- same granularity as hls4ml
- same precision at training

and inference

Make the model fit on one chip

65

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Make the model fit on one chip

66

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Parallelization: allocate resources for
each operation (run all network in
one clock) vs spread calculation
across several clock cycles

Javier Duarte I hls4ml

Network Tuning: Parallelization

!15

related to the Initiation Interval = when new inputs are introduced to the algo.

• ReuseFactor: how much to parallelize

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

more parallelization → more resources

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Make the model fit on one chip

67

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Parallelization: allocate resources for
each operation (run all network in
one clock) vs spread calculation
across several clock cycles

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

Make the model fit on one chip

68

• Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Parallelization: allocate resources for
each operation (run all network in
one clock) vs spread calculation
across several clock cycles

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating

point

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with
multiplications and sums → we perform a scan of
physics performance versus bit precision

• To avoid overflow/underflow of weights at
least 3 bits needed

ap_fixed<width,integer>

weights

The Conifer tool for BDTs
• Conifer is to DFs as hls4ml is to NNs

• Very much like hls4ml, conifer has
frontends, an Internal Representation,
and backends

• Frontend support for popular BDT
training libraries

• Backends: HLS, (hand-written) VHDL,
Forest Processing Unit (FPU)

• Conifer maps DFs onto FPGA logic:
Implemented with high parallelism
for low latency and high throughput

69

A few applications at the LHC

• 2-layers 2D CNN for ID and calibration with 2D images of seeded calorimeter clusters

- for the HGCAL endcap additional inputs of 3D cluster shape included

• Quantization and pruning applied to achieve 55.6 ns latency @ 360 MHz and < 1%
DSPs on VU13P AMD chip for a single instance of the NN

70

Hadronic 𝜏 reconstruction

CMS-DP-2023-062

A few applications at the LHC

71

• PF electrons will be reconstructed by linking a track with a calorimeter cluster

• Baseline kinematic approach used distance and pT compatibility to make a link

• New BDT approach combines calorimeter cluster shape variables, track qualities, and
track-matching features

• Improved electron reconstruction efficiency at 27.8 ns latency @ 180 MHz and < 1%
DSPs on VU13P AMD chip

Electron identification

[DP Note soon!]

The CMS L1 Scouting system
• L1T Data Scouting: acquire and analyse the L1 Trigger information for all events

• Look for physics signatures identifiable with just coarse L1 information but that would
evade the L1T → HLT → Offline chain, e.g.:

- too large “irreducible” backgrounds,
e.g. narrow resonances of low mass

- complex signatures exceeding
the computing capabilities of the
L1 system

- signal identification requires
time-correlation across several BXs,
e.g. slow or long-lived BSM

• FPGA-equipped boards that receive L1 data via optical links and transfer it to PCs and
the software world via TCP/IP or PCI express

• At HL-LHC: can profit from much improved L1T object reconstruction quality

• However, prohibitive downstream bandwidth and storage → to store all L1 info at 40
MHz a factor O(10) compression/reduction needed

- opportunity to explore AI methods for data reduction or compression, e.g. through SSL
72

Big data @ the Intensity Frontier

73

The Deep Underground Neutrino Experiment (DUNE)

• Next generation neutrinos oscillation experiment now under construction and R&D to
start operations in late 2020s

• Massive far detector 1 mile underground comprising 70k tons of Liquid Argon and

advanced technology to record neutrino interactions with extraordinary precision

• Uncompressed continuous readout of modules will yield O(100) Tb/s → unprecedented
for this type of experiment!

74

Multi-messenger astronomy

X-rays/Gamma-rays

Visible/Infrared light

Cosmic event
(ex, binary neutron star merger)

Gravitational waves

Neutrinos

Radio telescope

Multi-messenger astronomy probes the Universe using
different cosmic messengers

Multi-messenger astronomy w/ Neutrinos
• Core-collapse supernovae are a huge source of neutrinos of all flavours

- 99% of energy released is carried away by neutrinos

• Rich information embedded in neutrino signal plus associated gravitational and
electromagnetic signals

- supernova physics: core-collapse
mechanism, black hole formation,
nucleosynthesis, …

- particle physics: flavor transformation
in SN core, mass ordering, BSM…

• Detection and pointing in
real-time in large scale neutrino
experiments is an active field of
research!

75

Big data @ the Intensity Frontier

76

Operating principle of a LArTPC • Neutrinos interacting with the LAr produce
charged particles, which in turn produce
electrons

• Electrons are collected by anode wires

• The signal from each wire channel is a wave
form

• There are 3 planes of wires for a full 3D
reconstruction of the interaction

• The result is a continuous stream of 3D
images of detector volume yielding a
high-resolution “video”

time tick wire

si
gn

al
 a

m
pl

it
ud

e

Big data @ the Intensity Frontier

77

Detector
South Dakota

HPC
Fermilab, Illinois

4.8 TB/s
100 seconds: 480 TB

100 Gbps

Big data @ the Intensity Frontier

77

Detector
South Dakota

HPC
Fermilab, Illinois

4.8 TB/s
100 seconds: 480 TB

100 Gbps

At least 12 hours before we
can detect a supernova and
reconstruct point of origin!

Big data @ the Intensity Frontier

77

Detector
South Dakota

HPC
Fermilab, Illinois

4.8 TB/s
100 seconds: 480 TB

100 Gbps

At least 12 hours before we
can detect a supernova and
reconstruct point of origin!

• Aggressive data reduction must happen
underground close to the data source

• Must be smart as neutrinos from supernova
are challenging → Machine Learning

• Very limited power underground requires
dedicated hardware → FPGAs

