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Big Science in 21st century

Probing the fundamental structure of nature
requires complex experimental devices, large infrastructures
and big collaborations.

The Large .Hadron &
Collider,

International
UON Collider
“Collaboration
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Big Science = Big Data

https://a3d3.ai/
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How often it is produced —

Collisions which produce interesting products (ex: Higgs boson)
are typically very rare

The probability of producing a Higgs boson is 5-9 orders of magnitude smaller
than producing only jets
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Data reduction workflow @ LHC

CMS Experiment
40 MHz collision rate
~1B detector channels

On-detector ASIC
compression
~100 ns latency
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Data reduction workflow @ LHC

CMS Experiment
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Data reduction workflow @ LHC

CMS Experiment W(I:‘Idv;/];le .
40 MHz collision rate computing gri
Exabyte-scale
~1B detector channels
. datasets
FPGA filter stack N
~Hs latency @
Level-1 @
Pb/s Trigger
40 MHz @
/ 10s Gb/s Offline
-5 kHz analysis
10s Th/s Y

100s kHz

On-detector ASIC | \

compression
~100 ns latency

High-Level
Trigger

On-prem CPU/GPU filter farm
~100 ms latency



Make physics discoveries with
0,0025% of the events!

(the rest is lost...)
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The role of Al

* Machine Learning is used in particle
physics since the ‘80s

https://iml-wg.github.io/HEPML-LivingReview/

- it was shallow networks back then
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Deep Learning @ LHC

DL beyond classification:

DL for classification:

mass and energy regression

background estimation
simulation-based inference
inverse problems/unfolding
anomaly detection

uncertainty quantification
reconstruction & simulation

triggering

heavy jet tagging
heavy flavour jet tagging
exotic jets
tau leptons
event level

Computing software & hardware for DL:
optimized inference in central software for CPU/GPU
GPU hardware on-site for software trigger system & grid sites

more powerful chips in hardware trigger system & development of portable tools
ML-friendly central data format and scalable processing tools

In this talk, my personal choice of highlights (efforts I actively contribute to)
...there is a lot more ongoing!
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Anomaly detection in a nutshell

Machine learning based anomaly detection algorithms can
be used to look at our data without model assumptions

Main idea: learn directly from data how the standard
model looks like
= eliminate signal priors and search for anything

anomalous wrt standard model
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e ; )
~~ How to train an Al algorithm N
=~ to identify anomalous \ N
< events? NS
Learn to understand Try to separate Encode a prior of
regular events — two groups of events = potential anomalies —
look for outliers learn to identify anomalies look for similar

Unsupervised Weakly-supervised Semi-supervised

_—m
Increasing model dependence
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p-value

Anomaly detection in action!

* Inject anomalies of varying production rate (cross section) in background simulation and

calculate discovery sensitivity metric (p-value)

e Obtain comparison of sensitivity of different methods against standard analysis methods
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CMS Simulation Prelim
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- X YY(YY —»qq) -+ Seeag S dijet search

% VAE-QR

- Cltotatunting == dedicated search
—+ CATHODE for this signal

—4#- CATHODE-b

QuAk 7

QUAK: Model Specific
->- 121 <0.4 & mgp > 50 GeV

B 132 < 0.65 & mgp > 50 GeV
-@- Inclusive
i anomaly detection
.................................................. methods
I e e
ross Section . .
Higher discovery
probability!
CMS-EXO-22-026
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Apply to LHC data!

Anomaly detection in action
... but no discovery quite yet...

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

&) &

ATLAS 7%

EXPERIMENT
Phys. Rev. Lett. 125 (2020) 131801 CERN-EP-2020-062
12th January 2022

DOI: 10.1103/PhysRevLett.125.131801

Dijet resonance search with weak supervision
using Vs = 13 TeV pp collisions in the ATLAS
detector

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

&) &

ATLAS 7%

EXPERIMENT
Phys. Rev. D 108 (2023) 052009 CERN-EP-2023-045
December 6, 2023

DOI: 10.1103/PhysRevD.108.052009

Anomaly detection search for new resonances
decaying into a Higgs boson and a generic new
particle X in hadronic final states using Vs = 13 TeV
p p collisions with the ATLAS detector

EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

@)

ATLAS 7%

EXPERIMENT
Phys. Rev. Lett. 132 (2024) 081801 CERN-EP-2023-112
February 22, 2024

DOI: 10.1103/PhysRevLett.132.081801

Search for new phenomena in two-body invariant
mass distributions using unsupervised machine
learning for anomaly detection at s = 13 TeV with
the ATLAS detector

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

g CERN-EP-2024-291
CMS, 2024/12/06

A

\\

~\\b‘.\‘\\ \\ \\

CMS-EXO-22-026

Model-agnostic search for dijet resonances with anomalous
jet substructure in proton-proton collisions at /s = 13 TeV
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Data reduction workflow @ LHC

99.75% events Level-1
I‘EjECtEd! Trigger

Offline
IS NEW PHYSICS EVEN THERE? analysis

event filtering starts very early in the data processing

99% events H igh'l-eve'
rejected! Trigger
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Data reduction workflow @ LHC

g

NN
; H’::?:
2

99.75% events Level-1
I‘EjECtEd! Trigger

Offline

Addressing the challenge as :
analysis

early as possible in the data
reduction workflow!

99% events H igh'l-eve'
rejected! Trigger
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Data reduction workflow @ LHC

CMS Experiment .
40 MHz colés™™n rate
~1 Be#®lector channels

FPGA filter sta
~Hs latency

Level-1
Pb/s Trigger

One of the challenges today is to bring
complex deep learning models to the
extreme environments closer to the

$ data source!
On-detestor ASIC

compressior
~100 ns latency

Industry tools typically suboptimal...
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Bring ML models to hardware for real-time Al
high level synthesis for machine learning

A tool to efficiently program the FPGA hardware for Neural Networks
with experimental constraints in mind!

Many use cases in HEP and beyond... and still growing!
(see Fast Machine Learning For Science Workshop Oct '24)

pip install hls4ml Vivado™ HLS
Keras
TensorFlow '
PyTorch

Co-processing kernel
hils 4 ml

HLS )

COMPILER

compressed
model HLS. —_—
conversion Custom firmware
Usual ML jf design CCIfCIpU"
software workflow Menbr@
] tU ne Conﬁgurdﬁon A Siemens Business
PYTORCH i

@ ONNX https:/fastmachinelearning.org/hls4ml/ -
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Neural Network inference on FPGA

Neural network inference
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(Wi X 0q) + (W X 0y)]
(Wi X iq) + (W, X 03)

(WizXiy) + (Wys X ip)

Efficient implementation on FPGA uses
DIGITAL SIGNAL PROCESSORS

There are about 5—10k DSPs in modern
FPGASs!

ex: Xilinx Virtex Ultrascale +
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Make the model fit on one chip

e Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

3.0 1

before pruning after pruning

pruning
synapses

pruning

neurons
0.5 A1
0.0

2.5

2.0 A

1eq hisd4ml Reuse factor = 1, Kintex Ultrascale
—=— Full model '
Pruned model Fully parallelized
(max DSP use)

>

Number of DSPs available

compressi

pN

<24,6> <32,6> <40,6>

Fixed-point precision

<8,6> <16,6>

70% compression ~ 70% fewer DSPs
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Make the model fit on one chip

e Some tricks are needed here:

before pruning

NS
(R

elegele

k]

- Compression/pruning: remove the
connections that play little role
for final decision

synapses

neurons

- Quantisation: represents numbers
with few bits reduce resources

0101.1011101010
e —

integer ractional

e |
width

ap fixed<14,4>

pruning _ _ _

pruning L

AUC / Expected AUC

1e4 hls4ml Reuse factor = 1, Kintex Ultrascale

| —=— Full model

—=— Pruned model Fu//y para//e/lzed
after pruning 251 (max DSP use)
> compressi
Number of DSPs available
---------------------- == e

1.1

o
o
1

o
9

0.6 1

0.5 1

0.4

<24,6> <32,6> <40,6>

Fixed-point precision

Scan integer bits

Fractional bits fixed to 8
his4ml

: Full performance
at 6 integer bits

g tagger
q tagger
w tagger
z tagger
t tagger

<10,2> <15,7> <20,12> <25,17> <30,22> <35,27> <40,32>
Fixed-point precision
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Make the model fit on one chip

1e4 hisdml Reuse factor = 1, Kintex Ultrascale
. { —=— Full model
e Some tricks are needed here: | e Fully parallelized
before pruning after pruning o5 ( max DSP Use)

pruning
synapses

- Compression/pruning: remove the
connections that play little role
for final decision

-

::.o |
Number of DSPs available

pruning
neurons

-——

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision

0101.1011101010
- Quantisation: represents numbers
with few bits reduce resources

ap fixed<l14, 4>

> reuse = 4
mult use 1 multiplier 4 times

mult] reyse =2
- Reuse: allocate resources for each ] sse 2 mutiers 2 imes eacn
operation (run all network in one
clock) vs spread calculation across

mult
several clock cycles Q mutt] euse - 1

use 4 multipliers 1 time each

—p| mult
more parallelization = more resources mult

L4



Make the model fit on one chip

1e4 hisdml Reuse factor = 1, Kintex Ultrascale
. | —=— Full model
e Some tricks are needed here: 15 e Fully parallelized
before pruning after pruning 25 ( max DSP Use)

pruning
synapses

-——

- Compression/pruning: remove the
connections that play little role
for final decision

::.o |
Number of DSPs available

pruning
neurons

-——

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision

0101.1011101010

. fractional

- Quantisation: represents numbers
with few bits reduce resources

ap_fixed<

Longer latency
his4ml 3-layer pruned, Kintex Ultrascale

A

—=— Reuse Factor =1
—#— Reuse Factor = 2
—=— Reuse Factor = 3
—=— Reuse Factor = 4 ~ 1 75 ns
401 —=— Reuse Factor =5
—=— Reuse Factor = 6

50 A

Each mult. used 6x

- Reuse: allocate resources for each
operation (run all network in one
clock) vs spread calculation across
several clock cycles

Latency (clock cycles)

o ~75 ns Fully parallel

\4

<8,6> <16,6> <24.,6> <32,6> <40,6>
Fixed-point precision

More resources



Make the model fit on one chip

e Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Reuse: allocate resources for each
operation (run all network in one
clock) vs spread calculation across
several clock cycles

before pruning

pruning
synapses

pruning
neurons

after pruning

-——

-——

0101.1011101010

ap_fixed<

le3 his4ml

fractional ’

4>

3-layer pruned, Kintex Ultrascale

—>

Number of DSPs available

—a— Reuse Factor =1
Reuse Factor = 2
l. —#— _Reuse Factor = 3

—a— Reuse Factor = 4

—m— Reuse Factor =5
—=— Reuse Factor = 6

Max DSP

<8,6> <16,6>

<24,6> <32,6> <40,6>

Fixed-point precision

lea his4dml

Reuse factor = 1, Kintex Ultrascale

3.0 4 —=— Full model
—=— Pruned model

<8,6> <16,6>

Fully parallel

Each mult. used 1x

<24,6> <32,6> <40,6>

Fixed-point precision

More resources
A

v
Longer latency



Quantization-aware
training

e Post-training quantization can affect accuracy

- for a given bit allocation, the loss minimum at
floating-point precision might not be
the minimum anymore

e One could specify quantization while look
for the minimum

- maximize accuracy for minimal FPGA resources

e Workflow: quantization-aware training with
Google QKeras and firmware design with
hls4ml for best NN inference on FPGA
performance

C. N. Coelho et al.: Nature Machine Intelligence, Volume 3 (2021)

1

Ratio Model Accuracy / Baseline Accuracy

0.90

Resource Usage (%)

— f—

.00

0.98 o

0.96

0.94 ~

0.92 ~

(=) (]
N >
1

| = QKeras CPU

= (QKeras FPGA
== == Post-train quant.

Bitwidth

T T T 1
BF BPBHQE QB

50 +

W
o
1

W
(@)
|

[\O]
o
|

10 -

m— LUT
el 1
= DSP

i
+$

64

4 6 8 10 12 1
Bitwidth

I
4 1

6

BF BP BH QE QB
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Ultra-fast anomaly detection @ CMS

Learn typicality: by training on unbiased dataset

¥ZLAXO TL

Pr n ¢
MET N/A
4ely
4

10 jets

CICADA

CMS Preliminary 2023 (13.6 TeV)

w

S

[ ¢

o

40 &

v

o

Q.

Q

30 -?_

w

| -

Q

pu—)

- 20 OE)

-

| S
(1]

o w0

o

CMS establishing a new trigger
paradigm with sub-ps autoencoders
for anomaly detection!

From calorimeter and muon trigger system:

Objects: 10 jets, 4 muons, e/y, MET

Features: pt, 1, ® (in raw integer values)
Architecture: MLP

Input Outp
\\\\ ////
\ ™ - /
/ \ ~ — / \
— \ Code — /
\ / \ / R Py \ / \ /
] / \ ] ~ -~ / 1\ ]
\ ] A\ / \ /
i /1 \ I AN / /1 \ |
\ / / \ \ /
/ \ \ / \
— L = A = L oo A 4
I A A [/ / I\

/ \ / | / \ \ ]/ \ |
| VAR N S ~_ N L7 N\ Ly —
;o \[ |/~ ~A[ 7 \

/ \ / ~ ~ \ / \

\ / - ~ \ /
/ - ~ \_
/-~ <\

~
.
e
.

anomaly score

<
<

Encoder Decoder

Low-level inputs: aggregated calorimeter towers

Architecture: 2D CNN w/ knowledge distillation
[CMS-DP-2023-086]
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Ultra-fast anomaly detection @ CMS

Anomaly eXtraction Online Level-1 Trigger alLgorithm

CMS Experiment at the LHC, CERN
Data recorded: 2023-May-24 01:42:17.826112 GMT

'é Run / Event / LS: 367883 / 374187302 / 159

Online since
Spring '24!

Full analysis and
interpretation of dataset

CMS-DP-2023-079 ongoing... stay tuned!

CMS-DP-2024-059

CMS Preliminary 0.527 fb~!, 2024 (13.6 TeV)

1 I 1 | | 1 I I I I 1 I I 1 | 1 | I 1 l I 1 | 1 |
£ 10° E
S | Run 380470 E
w 105:_ 1 All Scouting i
AXO Nominal
B i AXO Pure -
10* 3 =
10% ™ E
Otherwise
untriggered '

Ll lIIlIlI

events!

‘Latency |LUTs |FFs |DSPs |BRAMs

lIllI

L | | L | | ! | | A | | L | | L P Ll -I - Lot 2 ticks

0 500 1000 1500 2000 2500 AXO! 'TL |5 21% [~0 |0 0
Emulated AXO Score 29




The HL-LHC challenge: CMS Phase 2

At HL-LHC, up to 200 pile-up interactions: CMS is upgrading the L1T and HLT to enable
the same physics program we are doing now (at @60 PU)

40 MHz tracking!

TRK EC
A 4 A 4
Track Endcap
Finder Calo
TPG TPG

Septe ke

EB HB HF DT RPC || CSC ||GEM
EB HB HF M RPC | | CSC ||GEM
TPG || TPG || TPG TPG || TPG || TPG || TPG
|-

Barrel

Calo

Trigger

*possible direct links from TF
* possible direct links to GT

|

w

Global
Trigger

L1 Trigger Project

* input data from 2 Tb/s to 63 Th/s
* latency of 12.5ps to take decision

Muon detectors

40 MHz
particle flow!
Correlator Trigger

CT-
PPS

CMS-TDR-021

BPTX

BRIL
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The HL-LHC challenge: CMS Phase 2

At HL-LHC, up to 200 pile-up interactions: CMS is upgrading the L1T and HLT to enable
the same physics program we are doing now (at @60 PU)

With significantly more powerful compute we expect ML to be well
embedded into L1T to exploit higher information granularity:

Around 20 projects (NNs, BDTs) in development accounting for 25
billion ML inferences per second

t=0
— Detector hits

Each small box is one
Xilinx Ultrascale+ FPGA

— Clusters & Tracks

his 4 ml AConifer — Particles

CALORIMETRY
MUONS

— Event Categorisation
— 1 bit: keep / discard

t=125us ¥ e

Credits: Sioni Summers (CERN) 31



Finding the best NN architecture

e At offline level: chose the architecture with highest accuracy even if not efficient...
e Current SOA is particle-based transformers — learn which neighbour particles are
relevant through attention mechanism
- input embedding of both single particle and pair-wise features information

- the pair-wise features encode physics principles = modifiers of standard dot-product
attention weights in Particle Attention Block

L blocks Class token (i}
A
7
Particle Particle Particle

@ Class Class
8 . .
Particles =>» E Attention Attention p === ===== Attention Agcl:ntll:m Agcl:nt;:m
£ xO Block X I Block xL_ 1 Block oc oc
= A A
(o)
=
5| U
Interactions = § --------  —
é (a) Particle Transformer
xl
\ O Choice of the pair-wise
Linear

features: from LundNet
P-MHA(Q, K, V) = SoftMax(QKT/ vdx + U )V
|

'

. Y/ s
1 k — ] ' A
dy: dimension of K . mfn ey
z = min (pr,a,p16)/(PT,0 + PTb)
| m? = (Eq + Ey)? — ||pa + Py |?

H. Quetal.: arXiv.2202.03772

ne;

(b) Particle Attention Block



Towards foundation models in HEP

e A foundation model is a large ML model trained on a vast quantity of data such that it
can be adapted to a wide range of downstream tasks (e.g., BERT, GPT, ...)

- self-supervised learning: use the data itself to create training objective

- outputs: powerful representations usable in other tasks

Tasks

Large Unlabelled
Dataset

Jet Tagging

> QAP
% Q\/(C)‘! Okgj
S A

Charged MI_’_iIeu_p
Particle Tracks c itigation
Calorimeter @
Clusters Pre-training Fine-tuning Track-Calo
- dati Clustering
Calorimeter oundation
Hits Model
Particle-Flow
Muon Tracks Reconstruction
Small Labelled %D Evont
Dataset C(g p ) Analysis
Multiple modalities
i
@ Anomaly
NY .
from M. Kagan at H&N 2023 '+ | Detection

reusable — one backbone used for several tasks
train on huge real data — leverage experimental data
leverage multi-modal methods — combine data from different detectors to address more complex tasks

uncertainty reduction — reduce dependence on simulation-based training 1)



Towards foundation models in HEP

Masked Particle
Modeling

Masked Particle
Type Prediction

Contrastive Learning:

. Next Token Prediction
Symmetry Augmentation

MPMv1 MPMv2
NN asl
ew \a Hoags 1 CJ
e + 4
(] (=) @] (+) (&) () (@) @& @ @
" 2 'Z Decoder posfti)nal
— 7'\ < encoding pad 4
. i, Latent
Kishimoto, Morinaga, Saito
mask 4 drop 4
) ) ) Tanaka, 2312.06909 . . .
Dillon, Kasieczka, Olischlager e Birk, Hallin, Kasieczka, 2403.05618

Plehn, Sorrenson, Vogel, 2108.04253 . o .
Golling, Heinrich, Kagan, Klein,
Leigh, Osadchy, Raine,
2401.13537

Leigh, Klein, Charton, Golling,
Heinrich, Kagan, Ochoa, Osadchy,
2409.12589

Contrastive Learning:
Re-Simulation

Supervised Pre-training
and Joint Optimization

Supervised Classification
and Generation

Large-Scale Fine-Grained
Classification

(a) Pre-training

N, =128 oo N, = 188 classes
1 [ 1 - latent p out
II *ismm*l [v+HLF| @'— - : "
| Consti | I Constituents | I Constituents | c : ng
| Ll | | (R | | (AT | Sophon model ) -
Jet (main structure) I O r(eﬂsyixrrl;;gs L A
e =2 = =2 woee
Backbone & ¢ g
| B (b) Usage A\
‘ |
|JetRep- |H | o] | | | o in
o
o
Analysis . . o| discr. = Zng.Es
Network Mikuni, Nachman 2404.16091 o
o
O X H Constructing
S/B Transfer learning - . discriminants -

, o Li, Li, et al. 2405.12972
Vigl, Hartman, Heinrich, 2401.13536
Harris, MK, Krupa, Maier, Woodward,

2403.07066
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Towards foundation models in HEP

* Two steps training:

Golling, Heinrich, Kagan, Klein,
Leigh, Osadchy, Raine,
2401.13537

- Pre-training gives better performance and can use less data on downstream Tasks

- Also shown better domain adaptation properties = robustness

\datasets

/ P Step 1: Pre-training\
|
|
- ’r Masked
vv — g — — Particle
= Modeling
Unlabeled
__

)

Labeled
datasets

Parameter sharing

G ———t—-

Jet Property
Prediction

|

o
o
o

Accuracy
o
ul
Ul

o
U
o

—e— Fixed
—e— Fine-tuned
—e— From scratch

102_

Rejection

101 J

103 10% 10° 106
N labelled training samples
—e— Fixed
—e— Fine-tuned
—e— From scratch
102 103 10° 10° 106

Labelled dataset size 35



Pre-training models for anomaly detection

e Contrastive learning is a self-supervised learning (SSL) technique that aims to learn
representations by comparing similar and dissimilar samples (called “augmentations”)

- can learn powerful latent representation for anomaly detection

e Downstream: usual unsupervised clustering techniques (e.g., autoencoders)

e Two approaches:

> R
E 4D supervised Transformer |
o 3 Bkg. only 1
g 0.07 - {=24, 0,=6 ]
. . . o 3 Bkg. + signal (A — 41 0.5%) A
o o i t= 1= ]
- self supervised: augmentation by masking 000 |- _ e ;
I n 2 ]
. . 0.05 |- ]
- supervised: augmentation by label
0.04 [ )
0.03 |- ]
E b ISD‘VAEI ST [ T 5 asymptotic:
3 _ -on | - ® P(Z>1)=1.00:38°
E 0.035 |- E‘?Og, Z[=14 ] 0.02 |- * ! | P(2>2)=1.0038
o Bkg. + signal (A - 410.5%) ] I P(Z>3)=1.00"2% ]
o 0.030 i [=2122,01=15 N : % ’ : empirical: :
[ — s | oo p 'n P(Z>1)=1.00:3% ]
I ] I it P(Z>2)=1.00:3%
- - [ ~1.00:388
Sample name Number of samples | Type 0.025 |- 1 o000 J AL IR R AR RN e D
5 i 1
SM processes™ | 4,000,000 B _ ] 0 %0 10 o e o
0.020
LQ — bt* 340,544 S .
‘) 4
A — 45 55,969 S oots | ]
0 26 Tl 1
h' — 17 ) 691,283 S asymplotic: 1 2 502 1 5 92 6
h= — tv¥ 760,272 S ooro | Adwatt B
5 I _ +0.00 ]
blackbox*® 4,210,492 S+B P28)-00058
I empirical:
0.005 I- P(Z>1)=0.50:3¢
P(Z>2)=0.15'0%3
I P(Z>3)=0.07:3%
0.000 — s
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Finding the best NN architecture

e Many offline applications moving to SOA

transformer architectures — not trivial mapping of
MHA to FPGA circuit

- attention map requires N2 computations
- softmax in those computation is slow and expensive
- large weights matrices easily saturate memory

e First vanilla solutions for HEP being explored
recently

e Expect more R&D in this direction in the near
future

- e.g., alternative architectures, aggressive
quantization and pruning of weights and/or
attention scores, state space models, ...

Wavyne Luk, et al.

14 stages pipeline (18 cycles)

T T T
I Il IV:

T
V:

T T
VI: VII:

T
VIIL:

T T T T
IX: X: XI: XII: Xz

T
XIV:

inéar Concat|Linear Matrﬁul Softt:rlax Matmul Linear | Sum |Linear |Linear| Sum |Linear | Log Softmax | Sync
[input et do) SMult-Head | @inear Linear Linear
0 Linear Parameter ‘L i ¢
o Y
Rei‘u @ Matmul
Transformer
v ® Linear
Linear v
@ ReLU 0 Softmax —>Matmul @
max v
@ sl ° Linear x heads
f . Prediction |
o el l o e i
TABLE III
FPGA RESOURCES UTILIZATION
BRAM 18K | DSP48E FF LUT
Total used 12 4,351 58,942 298,881
Available 5,376 12,288 3,456,000 | 1,728,000
Utilization 0.22% 35.41% 1.71% 17.30%

90 ns inference time

73% accuracy on jet tagging
16 jet level features
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Finding the best NN architecture

e At offline level: chose the architecture with highest accuracy even if not efficient...

e For edge applications this is not an option: crucial to co-design the architecture with the

application and its constraints

a) Multilayer Perceptron MLP

1
T
S 1

= D)
\7'\"‘{*""" .
W= — F

\ ",W I
\// T
N
N

b)

= T

-

S 3

c) Interaction Network IN

(quark, gluon, W, Z, top)

FPGA: Xilinx Virtex UltraScale
Architecture Constituents RF || Latency [ns| (cc)

T — -

(quark, gluon, W, Z, top)

at ",V:‘) < 1 N

S E=D Pr .- Pr < S & {

Ny = — E—» — g—+»s-+-g-——> Y
\% o .. Y L

1/FPR

12

10

arXiv.2402.01876

Model 8 const 16 const 32 const
DS 5.188 +0.152 7.263+0.408 12.114+1.155
IN 5.498 + 0.195 8.066 +0.281 12.091+0.822

MLP 5.294+0.106 6.301+0.622 5.641+0.101

8 bits

1

32
H constituents

FF BRAM18

8

Graph NNs at MLP 16

322

105 (21)
100 (20)
105 (21)

IT [ns] (cc) DSP LUT
5 (1) 262 (2.1%) 155,080 (9.0%)
5 (1) 226 (1.8%) 146,515 (8.5%)
5(1

25,714 (0.7%) 4 (0.1%
31,426 (0.9%) 4 (0.1%

O(100) ns latency! :

16
322

95 (19)
115 (23)

130 (26)

15 (3) 626 (5.1%) 386,294 (22.3%)
15 (3) 555 (4.5%) 747,374 (43.2%)
10 (2) 434 (3.5%) 903,284 (52.3%)

)
)
) 262 (2.1%) 155,080 (7.2%)
)
)

121,424 (3.5%) 4 (0.1%
238,798 (6.9%) 4 (0.1%
358,754 (10.4%) 4 (0.1%)

)
)
25,714 (0.7%) 4 (0.1%)
)
)

8

his 4 ml IN 16

32?2

00 B N[00 I N R R

160 (32)
180 (36)
205 (41)

15 (3) 2,191 (17.8%) 472,140 (27.3%)
15 (3) 5,362 (43.6%) 1,387,923 (80.3%)
15 (3) 2,120 (17.3%) 1,162,104 (67.3%)

191,802 (5.5%) 12 (0.2%)
594,039 (17.2%) 52 (1.9%)

761,061 (22.0%) 132 (25%) g




More aggressive quantization

e Solution: optimize the individual bitwidths alongside the NN accuracy using gradient

descent
e How: §94__ HGQ-1QFI’ 7ot Q7 ]
e s . . §93:_ BP 14-bit |
- treat the bitwidths as continuous variables 8T
92 — prporr= n
- introduce surrogate gradients for discrete variables :
such as bitwidths o1l 1

Increase ]
penalization N

- introduce a novel on-chip resource consumption metric oo}
that when incorporated into the loss function penalizes ‘

larger bitwidths efficiently P& HGQ still better than QKeras |
o . L - (C rop o i
- pruning integrated naturally in the optimization step 88| =~ | ,-
' . = ' . el 30k —— 100k 300k
(gradient descent reduces certain bitwidths to zero) Resource (LUT + 55 - DSP)
Gradient-based Automatic Mixed Precision Quantization
for Neural Networks On-Chip - H N
3¢ Fermilab I ] I
Chang Sun,’2:* Thea K. Arrestad,! Vladimir Loncar,** Jennifer Ngadiuba,® and Maria Spiropulu? Ve . I
\ETH Zurich (Zurich, Switzerland) |
g i (B, Swteind) ETHzurich
3{}/Iassachuseltts Institute of Technology (MA, USA) Pa er on arX|V read for
Institute of Physics Belgrade (Belgrade, Serbia)
Fully supported s o e o oo i U54) B ¥

—  in hlsdml! submission! 39




Finding the best NN architecture

. 2503.03103
e Also found more recently that MLP-mixer
architecture can further enhance (HEADY - - - - - . 5 Classes
C C \
performance  Npattdes , -MIPTMIP3D - - = =, ||, —{3 j13 {23 I
B | e
: St Euting ' '
e Processes sets (like particle clouds R o = e ORI R 22z
. . . T {MLP2})- ~ {MLP4} -~ =
or jet constituents) using only §oar an - BRI f
= = R o N L NI B - 31,
MLPs and alternates between two L[*J L[% ! H7ge ' ; u
key components: | o R : : :
. ——>{MLP2 |—> . . . .
o S N ey y S S R i B WG SR
- Token-mixing MLP
— mixes information across particles (rows), _ .
g 0.800 H:::======================__)'_’_f_.;____._x_________________________ﬂ
- Channel-mixing MLP 8 g 77sf T A :
— mixes features within each particle (columns) 2 &.“ v
| Fx
e Not naturally permutation-invariant 0720 e === E
: R .
— not necessarily needed for 0700 it ;
. . G e MLPM (N2 = 16)
ordered sets (as in the trigger) oe7sl- s ¢ MLPM (N2 =32) :
. . : o3 e MLPM (N,3=64)
— enables it to learn which features ossol o . MLPM (NS = 128) -
. . . SR ) DS (N, =32)
to retain and which to discard, o V' DS(NS-16)
ore . ' 4 IN(N2B=32 B
facilitating HGQ ) } llNENpsﬂsi |
060025 s
LUT
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Finding the best NN architecture

e Also found more recently that MLP-mixer

.
architecture can further enhance g 0o
performance 0T

L 0.750

e Processes sets (like particle clouds 0725}
or jet constituents) using only o700l
MLPs and alternates between two .
key components: :

0.650
- Token-mixing MLP 0625
— mixes information across particles (rows), 0.6001

- Channel-mixing MLP
— mixes features within each particle (columns)

Feature

e Not naturally permutation-invariant

2503.03103

|
(Np3 =
i v MLPM (Np®=
* (Np3 =
+ MLPM (N,3=
‘ DS (N,®=32)
; DS (No3=16)
IN (N3 = 32)
IN (N3 = 16)

«

LA L L L B B L B | L

1 b b b

T L

|
16)
32)
64)
128) |

50 75 100 125 150 175

200

Latency [ns]

— not necessarily needed for R
ordered sets (as in the trigger)

— enables it to learn which features :
to retain and which to discard,
facilitating HGQ

6 8 10 12 14 0 4 8 12 16 20 24 28

N,'¢ =32

N,'® =64 N,'®=128

COCSD;;\ S
0 8 16 24 32 40 48 56 0 16 32 48 64 80 96 112

— 12

|

10

Average Input Bitwidth

Particle index
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Al @ Extreme Edge

CMS Experiment
40 MHz collision rate
~1B detector channels

Pb/s

4OM77

ASICs typically used at the front end for sensors
read out: directly embed ML in here to allow
intelligent data compression at the very edge

On-detector ASIC
compression
~100 ns latency
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Example:
High-granularity calorimeter @ HL-LHC

Novel technology for future CMS endcap calorimeter:
50 layers with unprecedented number of readout channels (6M)!

EG - —r Y T
3 [-d- o .. CE-H
3

CMS HGCAL TDR

-100 . RN e
v .. .. Layer 30
\ B
-200F | 3
L L )
[y e ey "
800k -]
oL
-a00} T
¢
-s00f . S
L . ;
oo Se— . . dmam . -
-600 -500 -400 -300 -200 -100 O
x(mm)



Example:
High-granularity calorimeter @ HL-LHC

Novel technology for future CMS endcap calorimeter:
50 layers with unprecedented number of readout channels (6M)!

: 3 ,
Not enough bandwidth and latency to readout XL Y ff}*k
and put together all these channels downstream! . T 'gﬁ' Y '

o O ————
g i * .. CE-H
M0 L7, . Layer 30

-200f | L

~

CMS HGCAL TDR

L] VT — d i
-600 -500 -400 -300 -200 -100 O
x(mm)



Example: CMS HG calorimeter

One module = 432 sensors

44



Example: CMS HG calorimeter

One module = 432 sensors Encode to N bits
on ASIC with NN

/3

KA <>
296" .

A

Compress data on sensor in ASIC:

High radiation
Cooled to -30 C = low power
O(100) ns latency



Example: CMS HG calorimeter

One module = 432 sensors Encode to N bits
on ASIC with NN

N

S S
SOEE T N
s Sy O,

Transmit encoded data

~
\x

Reconstruct or do latent space
analysis on downstream

Compress data on sensor in ASIC: processors (FPGAs)

High radiation
Cooled to -30 C = low power
O(100) ns latency




Al @ Extreme Edge: HGCAL his 4 ml

e Tiny and heavily quantized NN —> low latency (50 ns) & low power (2.4 n}/inf)
e NN IP block created for the ASIC with Catapult HLS (Mentor/Siemens) and hls4ml
- NN architecture is fixed, weights can be reprogrammed over 12C
- NN parameters (weights and biases) triplicated for radiation tolerance = 200% overhead

e Developed in parallel a tool — FKeras — that performs bit-level sensitivity study of each
weight in the NN

- allows to prioritize which bits need protection and which may be safely disregarded,
reducing resource overhead
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Al @ Extreme Edge: Smart Pixels s 4 mi

e Challenge: unable to read pixel detector for real time analysis because of too high
granularity

Yoo et al 2024 Mach. Learn.: Sci. Technol. 5 035047

e Solution: use cluster shape to

extract incident angle of particle
traversing pixel sensors % Bf,ek/ / /
— distinguish low pr from

high pr charged particles and
select only high pT ones

Low p; negatlve High pT Low pr (positive)

) Config Out
ConfigIn Pixel, weights & biases programming Ry
w; by w, b,

e Can be done with a NN implemented
on sensor with the hls4ml+Catapult

bundle! o oo Mgl %}

e Found data reduction by 54.4% - 75.4% LL* }@
with low latency (3.9 ns) and couss] o I gl R caseE
low power (300 pW/cm?2)

* Prototype 1.5mm2 ASIC with momentum filtering NN in 28nm CMOS has been

fabricated and tests are in progress
arXiv.2406.14860
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Adaptability and robustness

e One of the challenges in both real-time and offline workflows is adaptability and
robustness to external conditions = improve domain adaptation & thus uncertainty

quantification

- offline: mostly driven by data/simulation disagreement = rely on already robust offline
reconstruction (updated ~ once per year)

- online: less robust reconstruction and changes on the scale of seconds to days / few weeks

* Possible approaches (not mutually exclusive) under active R&D:

robust pre-training strategies

continual learning (e.g., top up trainings)

agent-based for autonomous adjustments
(e.g., through reinforcement/active learning)

establishing MLOps pipelines: train, deploy,

maintain

Example: continual learning for

CMS Phase 2 tracker degradation

[CMS-DP-2023-022]

All Model's Performance On: BRI + 10% BS

CMS Phase-2 Simulation Preliminary
L) L) L] L] L) L] L]

14 TeV, 200 PU
T ™TT

Q 1.0 l L L I l L) L) l
m ad
oc - No Retraining AUC:
® L~ 0.8901
= - Non-CL Top-Up AUC:
.'5; 0.8 == 0.9060
o i CL Top-Up AUC i}
Q. [~ " 0.9840 p b
ﬁ 0.6}= All Model's Performance On: -
[ . BRI+ 10% BS .
L
o I / ]
- ' -4
a<) 04 - I, —
< /! -
() -
= | b
0y 7
02 _-_ _______ - = —
0 -m"""l“li""'nh I.).l L1 1 )
[9.90 0.92 0.94 0.96 0.98

Vertex |ID True Positive Rate

1.00
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CMS CMS Experiment at the LHC, CERN
Data recorded: 2016-Oct-11 10:44:24.059904 GMT
Run / Event / LS: 282842 / 47118579 / 25

Summary

e We hope to understand the fundamental
structure of nature

- we expect new phenomena to answer
those questions

- but these are rare so we build large scale
experimental setups

* The challenge ahead is big

- more data, more complex data, not
enough resources

e This is why we need to push ML to all
pipelines down to the edge

- to do more with less (faster & better)

e And hopefully discover new phenomena!







What are FPGAs?

Field Programmable Gate Arrays FPGA diagram
are reprogrammable integrated circuits

Contain many different building blocks
(‘resources’) which are connected together as you
desire
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What are FPGAs?

Field Programmable Gate Arrays FPGA diagram
are reprogrammable integrated circuits

Look Up Tables (LUTs) perform arbitrary
functions on small bitwidth inputs (2-6 bits)
— used for boolean operations,
arithmetics, memory

Flip-flops register data in time with the clock pulse

TR

Logic cell

¥ \;_':‘ .'1 = \_::.:“: .“ - N _
;-..-.:-.‘.. ;j’ij’ 4 . £ AQC .‘\;: _“ 3 < — 4 | t |
7 VS S PRI AR -.7."1\\- " = R - npu
1 Inputs —" D Hi Out

. Clock—.->F|Op
Look-up
Flip-fl
table p-Hiop
N\ . (registers)
— (logic)
mm-«vsyw—»\‘ S

51



What are FPGAs?

Field Programmable Gate Arrays FPGA diagram
are reprogrammable integrated circuits

DSPs are specialized units for multiplication and
arithmetic

— faster and more efficient than LUTs for these
type of operations

— for deep learning, they are often the most
precious resource

Also contain embedded components:

Digital Signal Processors (DSPs): logic
units used for multiplications
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What are FPGAs?

Field Programmable Gate Arrays
are reprogrammable integrated circuits

BRAMs are small, fast memories (ex, 18 Kb each)

— more efficient than LUTs when large memory is

required

Modern FPGAs have ~100 Mb of BRAMs,
chained together as needed

FPGA diagram

Also contain embedded components:

Digital Signal Processors (DSPs): logic
units used for multiplications

Random-access memories (RAMs):
embedded memory elements
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What are FPGAs?

Field Programmable Gate Arrays
are reprogrammable integrated circuits

Contain array of logic cells embedded with DSPs,
BRAMs, etc.

Support highly parallel algorithm implementation

Low power per Op (relative to CPU/GPU)

RIS

FPGA diagram

Digital Signal Processors (DSPs): logic
units used for multiplications

Random-access memories (RAMs):
embedded memory elements
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Why are FPGAs fast?

* Fine-grained / resource parallelism

- use the many resources to work on different
parts of the problem simultaneously

- allows us to achieve low latency

* Most problems have at least some sequential
aspect, limiting how low latency we can go

- but we can still take advantage of it with...

) Y. 5! iIn 4 <R

* Pipeline parallelism

- instruct the FPGA to work on different data Like a production line for data...
simultaneously

- allows us to achieve high throughput
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How are FPGAs programmed?

P C, C++, Constraints/
Hardware Description Languages algorithm Directives

HDLs are programming languages which describe
electronic circuits

High Level Synthesis & XILINX. Vivado HLS | p \

generate HDL from more common C/C++ code

pre-processor directives and constraints used to
optimize the timing

drastic decrease in firmware development time! VHDL/Verilog

See Xilinx Vivado HLS, Intel HLS, Catapult HLS

Firmware block
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|

. i
L2 i
-_— .
2
%1%

Wi1
W12
Wi3

Neural Network inference on FPGA

Neural network inference

W21

—

matrix multiplication

il il
—l il
iy

Woo | -

Wr3

W41 01
w
22 0,
W13

(Wi X 0q) + (W X 0y)]
(Wi X iq) + (W, X 03)

(WizXiy) + (Wys X ip)

Efficient implementation on FPGA uses
DIGITAL SIGNAL PROCESSORS

There are about 5—10k DSPs in modern
FPGASs!

ex: Xilinx Virtex Ultrascale +
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Make the model fit on one chip

e Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

3.0 1

before pruning after pruning

pruning
synapses

pruning

neurons
0.5 A1
0.0

2.5

2.0 A

1eq hisd4ml Reuse factor = 1, Kintex Ultrascale
—=— Full model '
Pruned model Fully parallelized
(max DSP use)

>

Number of DSPs available

compressi

pN

<24,6> <32,6> <40,6>

Fixed-point precision

<8,6> <16,6>

70% compression ~ 70% fewer DSPs
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Quantization-aware training

* Post-training quantization can affect accuracy

- for a given bit allocation, the loss minimum at floating-point precision might not be

the minimum anymore

e One could specify quantization while look for the minimum during training

- quantization functions
applied to weights and activations
only in the forward pass

- use Straight Through Estimator
for back propagation step

e Our workflow: quantization-aware
training with Google QKeras and
firmware design with h1s4ml
for most efficient NN inference
on chip!

Weigh r
(FP)

il || 222

il || SE

T

0.1 | -0.1

-0.2 | 0.2

Gradient dL/dr
(FP)

Quantizer

Quantized Weight Q

(INT)

2

13

2

-0.1

0.1
-0.2

0.2

Gradient dL/dQ

(FP)

==
<

<:| [ Backward Pass }

A. Gholami et al, arxiv.2103.13630
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High-Granularity Quantization

e The wish: squeeze even more NN inference performance when each parameter in the
network may have its unique bitwidth

e Limitations of QKeras:
- bitwidths for NN parameters are optimized in predefined, structured block (e.g., per layer)

- bitdiwdth is not part of optimization
— need to run your own
hyperparameter scan

e Solution: optimize the individual |
bitwidths alongside the NN accuracy Hee O‘fgt,é%. lpr“n'ng
using gradient descent “ing’
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Other quantization methods

HAWQ — Hessian AWare Quantization

-

/Sensitivity: Flat vs. Sharp Local Minima\

Balancethe LN
Trade-off DN

Inference Latency

e mixed-precision quantization tool
written for PyTorch

e main idea: sensitive layers are kept
at higher precision than less sensitive
layers

* problem: search space is exponential
to the number of layers in models

e solution: use ILP to find the optimal trade-off between model perturbation (through
Hessian trace) and application-specific constraints (latency, BOPs, size limit,...)

e Scales linearly w.r.t to the number of layers and bitwidth options

arxiv.2011.10680
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Efficiency beyond quantization

Teacher Model

(large neural network) /Q/___ \ / O \
slielore ® e
(oloiolgi®(g /1O O b
Ay Y -~ s ) -
- oglelle)® \LO—EN, |\O— e
v ) e : | w
v Loss (=) s
=) Student Model \C}\ \Q\ .
) ﬁ N @/ arxiv.2401.09949
I—b o0 O7 ) ROy arxiv.2406.16752

| Final expression after simplification: y = c;tanh(c,x2) + c3%,%,Sin(c,x3) |

o/ arxiv.2311.14160

ery e Symbolic regression
Knowledge distillation

e Trained with gradient-based approach can
achieve high sparsity and compact
representation

e Mathematical operations can be
implemented efficiently in HLS with LUTs

e Allows to deploy smaller student NN at

similar accuracy of more complex
teacher NN

e And to transfer powerful inductive bias
to the student NN

Fast autoencoders for anomaly detection

e |f variational, define anomaly metric in latent space —

deploy only encoder in inference = half latency and
model size

e Informed latent representations can lead to more

efficient model = SSL and compact foundation models/
transformers 62

arxiv.2311.17162, 2401.08777, 2108.03986




High-Granularity Quantization

e Solution: optimize the individual bitwidths alongside the NN accuracy using gradient

descent
e How: §94__ HGQ-1QFI’ 7ot Q7 ]
e s . . §93:_ BP 14-bit |
- treat the bitwidths as continuous variables 8T
92 — prporr= n
- introduce surrogate gradients for discrete variables :
such as bitwidths o1l 1

Increase ]
penalization N

- introduce a novel on-chip resource consumption metric oo}
that when incorporated into the loss function penalizes ‘

larger bitwidths efficiently P& HGQ still better than QKeras |
o . L - (C rop o i
- pruning integrated naturally in the optimization step 88| =~ | ,-
' . = ' . el 30k —— 100k 300k
(gradient descent reduces certain bitwidths to zero) Resource (LUT + 55 - DSP)
Gradient-based Automatic Mixed Precision Quantization
for Neural Networks On-Chip - H N
3¢ Fermilab I ] I
Chang Sun,’2:* Thea K. Arrestad,! Vladimir Loncar,** Jennifer Ngadiuba,® and Maria Spiropulu? Ve . I
\ETH Zurich (Zurich, Switzerland) |
g i (B, Swteind) ETHzurich
3{}/Iassachuseltts Institute of Technology (MA, USA) Pa er on arX|V read for
Institute of Physics Belgrade (Belgrade, Serbia)
Fully supported s o e o oo i U54) B ¥
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QKeras & hls4ml

= (QKeras CPU
- (QKeras FPGA

1.04 A

1.02 A

1.00 ~

0.98 H

0.96 A

0.94 ~

0.92 ~

Ratio Model Accuracy / Baseline Accuracy

= == Post-train quant.

0.90 I I
5 10
Bitwidth

15

1 T T 1
BF BPBHQE QB

Matches ap_fixed exactly!
- same granularity as hls4ml
- same precision at training

and inference

Resource Usage (%)

www.nature.com/natmachintell / August 2021 Vol. 3No. 8

nature
machine
intelligence

Quantized neural networksontheedge
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Bitwidth

C. N. Coelho et al.: Nature Machine Intelligence, Volume 3 (2021)

I
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6
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Make the model fit on one chip

e Some tricks are needed here:

before pruning

NS
(R

elegele

k]

- Compression/pruning: remove the
connections that play little role
for final decision

synapses

neurons

- Quantisation: represents numbers
with few bits reduce resources

0101.1011101010
e —

integer ractional

e |
width

ap fixed<14,4>

pruning _ _ _

pruning L

AUC / Expected AUC

1e4 hls4ml Reuse factor = 1, Kintex Ultrascale

| —=— Full model

—=— Pruned model Fu//y para//e/lzed
after pruning 251 (max DSP use)
> compressi
Number of DSPs available
---------------------- == e

1.1

o
o
1

o
9

0.6 1

0.5 1

0.4

<24,6> <32,6> <40,6>

Fixed-point precision

Scan integer bits

Fractional bits fixed to 8
his4ml

: Full performance
at 6 integer bits

g tagger
q tagger
w tagger
z tagger
t tagger

<10,2> <15,7> <20,12> <25,17> <30,22> <35,27> <40,32>
Fixed-point precision
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Make the model fit on one chip

1e4 hisdml Reuse factor = 1, Kintex Ultrascale
. { —=— Full model
e Some tricks are needed here: | e Fully parallelized
before pruning after pruning o5 ( max DSP Use)

pruning
synapses

- Compression/pruning: remove the
connections that play little role
for final decision

-

::.o |
Number of DSPs available

pruning
neurons

-——

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision

0101.1011101010

- Quantisation: represents numbers
with few bits reduce resources

ap_fixed<1l4,4>

reuse = 4
—> mult use 1 multiplier 4 times
. . mult] reyse =2
- Parallelization: allocate resources for ] sse 2 mutiers 2 imes eacn
each operation (run all network in
one clock) vs spread calculation -
across several clock cycles Q e
— mult use 4 multipliers 1 time each
more parallelization = more resources mult
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Make the model fit on one chip

1e4 hisdml Reuse factor = 1, Kintex Ultrascale
. | —=— Full model
e Some tricks are needed here: 15 e Fully parallelized
before pruning after pruning 25 ( max DSP Use)

pruning
synapses

-——

- Compression/pruning: remove the
connections that play little role
for final decision

::.o |
Number of DSPs available

pruning
neurons

-——

<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision

0101.1011101010

. fractional

- Quantisation: represents numbers
with few bits reduce resources

ap_fixed<

Longer latency

A

his4ml 3-layer pruned, Kintex Ultrascale

—=— Reuse Factor =1
—#— Reuse Factor = 2
—=— Reuse Factor = 3
—=— Reuse Factor = 4 ~ 1 75 ns
401 —=— Reuse Factor =5
—=— Reuse Factor = 6

50 A

Each mult. used 6x

- Parallelization: allocate resources for
each operation (run all network in
one clock) vs spread calculation
across several clock cycles

Latency (clock cycles)

o ~75 ns Fully parallel

\4

<8,6> <16,6> <24.,6> <32,6> <40,6>
Fixed-point precision

More resources



Make the model fit on one chip

e Some tricks are needed here:

- Compression/pruning: remove the
connections that play little role
for final decision

- Quantisation: represents numbers
with few bits reduce resources

- Parallelization: allocate resources for
each operation (run all network in
one clock) vs spread calculation
across several clock cycles

before pruning

pruning
synapses

pruning
neurons

after pruning

-——

-——

0101.1011101010

ap_fixed<

le3 his4ml

fractional ’

4>

3-layer pruned, Kintex Ultrascale

—>

Number of DSPs available

—a— Reuse Factor =1
Reuse Factor = 2
l. —#— _Reuse Factor = 3

—a— Reuse Factor = 4

—m— Reuse Factor =5
—=— Reuse Factor = 6

Max DSP

<8,6> <16,6>

<24,6> <32,6> <40,6>

Fixed-point precision

lea his4dml

Reuse factor = 1, Kintex Ultrascale

3.0 4 —=— Full model
—=— Pruned model

<8,6> <16,6>

Fully parallel

Each mult. used 1x

<24,6> <32,6> <40,6>

Fixed-point precision

More resources
A

v
Longer latency



The Conifer tool for BDTs

e Conifer is to DFs as hls4ml is to NNs . -
»- LightGBM
e Very much like hls4ml, conifer has CatBoost 9
frontends, an Internal Representation,
and backends @ ONNX

e Frontend support for popular BDT
training libraries

e Backends: HLS, (hand-written) VHDL, /\ Conifer
A

Forest Processing Unit (FPU) Internal
Representation

e Conifer maps DFs onto FPGA logic:

Implemented with high parallelism - FPU
T Vivado™ HLS . I

for low latency and high throughput [ — ol 5
! ”{f.f" iNF‘m’\

| i

| Al st
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A few applications at the LHC

Hadronic t reconstruction

e 2-layers 2D CNN for ID and calibration with 2D images of seeded calorimeter clusters
- for the HGCAL endcap additional inputs of 3D cluster shape included

e Quantization and pruning applied to achieve 55.6 ns latency @ 360 MHz and < 1%
DSPs on VU13P AMD chip for a single instance of the NN

pSe"™ T [GeV]

CMS Phase-2 Simulation Preliminary ~ 14 TeV, 200 PU CMS Phase-2 Simulation Preliminary 14 TeV, 200 PU
(- T T T T T T T T ! | T T T T | ! T T ' | ! T ! ' — I L T L T 1 ] 1 T
21_0_ _______________________________________ IR E —e— TauMinator |
5 ! g = —4— Calo Tau
-— Q 4
— - **f —}— ————— "(_6 10 ]
o) -
o o
R <
= 0.8 - o
2 CMS-DP-2023-062
c
()] 103:
0.6 -
|
4 :
b 10°F
0.4 + . i
,' — TauMinator fits
! —— Calo Tau fits
+ ® TauMinator 1
0.2 I' A Calo Tau ] 10 g
*{ Bl pL'T> 60 GeV
! pk'T> 90 GeV
B pL'"> 120 GeV
0.04 PTE  T W oL | P TR SRS
200 250 10 160 180 200

140
Offline threshold [GeV]
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A few applications at the LHC

Electron identification

e PF electrons will be reconstructed by linking a track with a calorimeter cluster

e Baseline kinematic approach used distance and pr compatibility to make a link

 New BDT approach combines calorimeter cluster shape variables, track qualities, and

track-matching features

e Improved electron reconstruction efficiency at 27.8 ns latency @ 180 MHz and < 1%

DSPs on VU13P AMD chip

CMS Phase 2 S/mulat/on Prellm/nary

105 ¢ PU 200 (14 TeV)
< 'V T ]
E - Mlnlmum Blas |n“| <1 479 ]
= |
0] |
S v Tk-matched electron
O 104k (Elliptic ID) -
i . Tk-matched electron
;% (Composite ID LooseWP)
F . Tk-matched electron
103 ° (Composite ID TightWP)
T
B E*A
| Vo
bossoong, 0
® *aés
2
10 = ‘O A#A -
® 4,%
® ¢u%
®
O."e ________ f_ufgﬁg
Bg E% _
1 Bog TRy
10" %Q B =
e e ¥ :
T
[DP Note soon!] %
100 L L L L | L | L | L L L L | L ++LI Lr L L L
0 10 20 30 40 50 60

Online pr threshold [GeV]

Efficiency @ 18kHz

: flat -pr electrons |r|“|<1 479
1.0
0.8
id
: Tk-matched electron
: -v-. (Elliptic ID)
0.6 E p' > 31.5 GeV 1
?’ Tk-matched electron i
: »— (Composite ID LooseWP) |
0.4l i pk' > 31.5 GeV |
o i Tk-matched electron
: —a— (Composite ID TightWP)
i pk' > 20.5 GeV
0.2 : i
#
|
B |
|
- |
0 O-_;-L-.t-[:l-.-.-a.i] | L | Il L L | L ! L
0 20 40 60 80 100

CMS Phase 2 S/mu/at/on Pre//m/nary

PU 200 (14 TeV)
T Ll ‘ T T T

pFEN [GeV]
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The CMS L1 Scouting system

e L1T Data Scouting: acquire and analyse the L1 Trigger information for all events

e ook for physics signatures identifiable with just coarse L1 information but that would
evade the L1T = HLT — Offline chain, e.g.:

- too large “irreducible” backgrounds,
e.g. narrow resonances of low mass

- complex signatures exceeding

the computing capabilities of the L1 trigger

LT system

- signal identification requires
. . L1 Online/offline
time-correlation across several BXs, Scouting Analysis

e.g. slow or long-lived BSM

e FPGA-equipped boards that receive L1 data via optical links and transfer it to PCs and
the software world via TCP/IP or PCI express

e At HL-LHC: can profit from much improved L1T object reconstruction quality

* However, prohibitive downstream bandwidth and storage — to store all L1 info at 40
MHz a factor O(10) compression/reduction needed

- opportunity to explore Al methods for data reduction or compression, e.g. through SSL
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Big data @ the Intensity Frontier

The Deep Underground Neutrino Experiment (DUNE)

Fermilab /
\/
\\ [,
\\ /
\\d/

Sanford
— Underground
\ Research Facility
L\
|

3\

¢
|

NEUTRINO
PRODUCTION

/[ UNDERGROUND PARTICLE

PARTICLE DETECTOR DETECTOR

e Next generation neutrinos oscillation experiment now under construction and R&D to
start operations in late 2020s

* Massive far detector 1 mile underground comprising 70k tons of Liquid Argon and
advanced technology to record neutrinointeractions with extraordinary precision

e Uncompressed continuous readout of modules will yield O(100) Tb/s = unprecedented
for this type of experiment!
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Multi-messenger astronomy

Multi-messenger astronomy probes the Universe using
X-rays/Gamma-rays different cosmic messengers

Cosmic event

(ex, binary neutron star merger) Radio telescope

Gravitational waves
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Multi-messenger astronomy w/ Neutrinos

e Core-collapse supernovae are a huge source of neutrinos of all flavours

- 99% of energy released is carried away by neutrinos

e Rich information embedded in neutrino signal plus associated gravitational and
electromagnetic signals

X-rays/Gamma-rays

Cosmic event
(ex, supernovae)

- supernova physics: core-collapse
mechanism, black hole formation,
nucleosynthesis, ...

Radio telescope

- particle physics: flavor transformation
in SN core, mass ordering, BSM...

Gravitational waves

 Detection and pointing in
real-time in large scale neutrino

experiments is an active field of
research!

75



Big data @ the Intensity Frontier

Operating principle of a LArTPC e Neutrinos interacting with the LAr produce
e charged particles, which in turn produce
L son e electrons

e Electrons are collected by anode wires

Charged Particles WAV
- > : N ‘Y X /

Cathode
Plane

e The signal from each wire channel is a wave
form

— e There are 3 planes of wires for a full 3D
reconstruction of the interaction

P - - i e The result is a continuous stream of 3D
Y wire plane waveforms t o . .
images of detector volume yielding a
high-resolution “video”
P
= l
B 200
é_ ‘v‘l '."'\\ - 150
N [ N\ .
= I‘”‘ )J' \ [Tl’** ‘%i | 100
« U< 114
540
. . e 600 110 H . : ProtoDUNE Data
time tick wire
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Big data @ the Intensity Frontier

Detector . HPC o
South Dakota Fermilab, Illinois

4.8 TB/s
100 seconds: 480 TB
| Z 100 Gbps

TETTTTTTTTYERITTTRTTIITRRTRY =

Liquid Argon TPC

Charged Particles

Cathode

~

Y wire plane waveforms
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Big data @ the Intensity Frontier

HPC

Detector . o
South Dakota Fermilab, Illinois

Sense Wires
Uuvey V wire plane waveforms 4 8 I B/S
7/ L )

100 seconds: 480 TB
\ 7 100 Gbps

TETTTTTTTTYERITTTRTTIITRRTRY =

NN
SR

SRR
DN

///
‘‘‘‘‘‘‘‘‘‘
//

At least 12 hours before we
| can detect a supernova and
_——— reconstruct point of origin!

N

SRR
N i
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Big data @ the Intensity Frontier

Detector HPC
South Dakota Fermilab, Illinois
R 4.8 TB/s
| 100 seconds: 480 TB
\ A 100 Gbps
Cothod .............................’

At least 12 hours before we
can detect a supernova and
- reconstruct point of origin!

e Aggressive data reduction must happen SMdien . oo
underground close to the data source See L LIRSS

e Must be smart as neutrinos from supernova
are challenging =& Machine Learning

* Very limited power underground requires
dedicated hardware = FPGAs
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