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Gravitational Waves
● 100 years from Einstein’s prediction to the first detection:

14 September 2015 – 10-year anniversary this September!
● time-varying mass quadrupoles 
→ propagating ripples in spacetime (GWs)

● gravity is a weak force, spacetime a “very stiff fabric” 
→ need extreme astrophysical sources

○ compact binary coalescences (CBCs)
○ supernovae and other cataclysmic explosions
○ deformed rotating compact objects
○ early universe physics

● A whole new spectrum for observational astronomy!
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“AI” and gravitational waves (?)
● Let’s start with an exercise of “How to Lose Friends & Alienate People”:

● We have seen plenty of great applications of new data analysis tools which are inspired by
the artificial intelligence & machine learning community.

● But none of these really make decisions on their own, or replace parts of the human 
researchers’ critical role in designing, training and evaluating their methods.

● In this talk, I’ll more often say “ML”, for machine learning, rather than “AI”.
● Still, let’s get to all that cool stuff!
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I don’t think there have really been any applications 
of “Artificial INTELLIGENCE” to GWs yet!

[medium.com]

I don’t like this!



“AI”/ML and gravitational waves
1. State of GW astrophysics
2. “AI”/ML applications:

i. Detector design, operation and characterisation
ii. Compact binary coalescences
iii. Bursts
iv. Continuous waves
v. Stochastic backgrounds

vi. Beyond LVK: future detectors

for each of these:
● state of the art
● example “AI”/ML highlights (personal selection, not necessarily representative)
● open problems and future directions
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} focus: current LVK 
detector network

LOADS of great contributed 
talks at this conference – 

check them out!

{data
analysis



“AI”/ML and gravitational waves
for more details:
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…but a lot more cool stuff has already been published since we stopped collecting references in 2024!

Elena Cuoco, Marco Cavaglià, Ik Siong Heng, David Keitel & Christopher Messenger, doi:10.1007/s41114-024-00055-8 

The field greatly profited from EU COST 
Action CA17137 “g2net”! g2net.eu

https://doi.org/10.1007/s41114-024-00055-8
https://www.g2net.eu/


The LVK detector network and collaboration
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● >2500 scientists
from >200 groups
on 5 continents 

● 53 papers from O3
● 3 from O4 so far KAGRA

[LVK LRR23,3 (2023)]

https://doi.org/10.1007/s41114-020-00026-9


LVK detectors
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[LVC2016 PRL116,061102] 

[LIGO]

Note: O1 era graphic!

Laser power has since 
increased, O4 laser offers 
max input power 125 W.

Many other improvements, 
including

● new test masses
● frequency-dependent 

squeezing
● various noise 

mitigations
● …

[Capote+2025
  PRD111,062002]

Virgo: Acernese+2015 
CQG32,024001

KAGRA: Akutsu+2021
PTEP,2021,05A101

example: LIGO

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevD.111.062002
https://iopscience.iop.org/0264-9381/32/2/024001/
https://doi.org/10.1093/ptep/ptaa125


LVK search types
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[S.Galaudage]

“CBCs” “CW”
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CBCs

[LVC2016 PRL116,061102 / PRL116,241102]

● evolution of compact objects
● tests of GR in strong-field regime
● “standard siren” cosmography
● nuclear matter at extreme 

densities
[OzGrav / LVK2024 PRX13,041039]

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevX.13.041039


Beyond CBCs: GW bursts
● less well-modeled GW transients: eccentric BBHs,

supernovae, magnetars, cosmic strings, …

● search with more generic methods:
excess power, pattern recognition, …

● No detections so far. (Besides BBHs!)
● Non-detections can still yield physical constraints:

nearby supernovae, glitching pulsars, …
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[NASA/ESA/ASU]

[LVC PRD100,061101 (2019)]

Beyond CBCs: stochastic GWs
● Astrophysical backgrounds:

overlap of faint, unresolved CBCs
● Cosmological backgrounds = early-universe physics:

inflationary tensor modes, phase transitions, …

● Tightening upper limits, detection realistic
with improving LVK network sensitivity.

● Shout-out to Pulsar Timing Arrays! [IPTA2024 ApJ966:105]

https://doi.org/10.1103/PhysRevD.100.061101
https://doi.org/10.3847/1538-4357/ad36be


Beyond CBCs: CWs
● GWs from individual spinning neutron stars

with non-axisymmetric deformations

● extremely weak, but observable for years
● computationally extremely challenging
● no detection yet → upper limits science so far
● great promise in multi-messenger astronomy
● tests of GR, nuclear matter at extreme densities
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Beyond CBCs: new physics
● modified gravity effects
● addressing the Hubble tension
● exotic compact objects (e.g. boson stars) 
● primordial black holes
● indirect detection of particle dark matter

via boson cloud annihilation
● dark matter direct detection with

interferometric detectors

[I.Bourgault]

[LIGO/T.Pyle/R.Prix]

[Brito, Cardoso & Pani]



“AI”/ML and gravitational waves
So, where can it help? 

● For some signal types (e.g. CBCs, CWs) we know exactly what we’re looking for, but might not be 
able to efficiently cover the full generic parameter space with “traditional algorithms”.

● We also search for “unknown knowns” (waveforms that can’t be fully predicted)
and “unknown unknowns”.

And why is it difficult?

● We are looking for extremely faint signals in our detector noise:
only the loudest CBCs (peak strain ~10-21 ) can be directly “seen” in the output timeseries.

● The opposite of the original application regime of many ML algorithms
(feature-rich and high-contrast).
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i. Detector design, operation and characterisation
● GW detectors are extremely complex and intricate machines
● near-Gaussian noise floor = superposition of instrumental and environmental noise sources
● plus non-stationary and non-Gaussian components
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state of 
the art

[N. Kijbunchoo]
[Capote+2025 PRD111,062002]

https://doi.org/10.1103/PhysRevD.111.062002


i. Detector design, operation and characterisation
● ML could offer possibilities for:

○ optimising detector design across an
immensely-dimensional parameter space 

○ real-time optimization of detector parameters
(augmenting the control loops)

○ real-time noise prediction and mitigation:
correlations between auxiliary sensors
(environmental/instrumental monitors)
and the main GW strain channel

○ non-linear noise regression and subtraction after data-taking
○ glitch identification and removal (non-Gaussian transients)
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[N. Kijbunchoo]

[Capote+2025 PRD111,062002]

https://doi.org/10.1103/PhysRevD.111.062002


i. Detector design, operation and characterisation
● Some noise components have secure “witness channels”: auxiliary sensors that allow monitoring their 

time-varying strength and subtracting the effect from the GW strain channel
● Vajente+2020 PRD101,042003: “Machine-learning nonstationary noise out of gravitational-wave detectors”
→ NonSENS: “Non-linear Noise Subtraction”
○ parameterised model for non-linear relations between channels
○ optimised with gradient descent model (ADAM)
○ O3: non-linear subtraction of narrowband

instrumental lines, in particular 60 Hz power line
○ O4: mainly to remove beam jitter noise
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highlight 
example

[Vajente+2020 PRD101,042003]

https://doi.org/10.1103/PhysRevD.101.042003
https://doi.org/10.1103/PhysRevD.101.042003


i. Detector design, operation and characterisation
● Loud, short, broadband, complex-morphology glitches

are among the most problematic noise artifacts.
● Gravity Spy: synergy of citizen science and machine learning

○ Zevin+ 2017 CQG34,064003, 2023 EPJP139,100
○ triggers flagged by excess power algorithm (“omicron”)
○ basic data unit: time-frequency spectrograms
○ initial pre-labeled data to train a CNN for pre-classification
○ volunteers on Zooniverse* confirm/refine classification
○ feedback loop to retrain the network

● results used e.g. in rapid response to online alerts
● actual glitch removal mainly with BayesWave algorithm 

[Hourihane+2022 PRD106,042006] 
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highlight 
example

[N. Kijbunchoo]

[*] zooniverse.org/projects/zooniverse/gravity-spy 

https://doi.org/10.1088/1361-6382/aa5cea
https://doi.org/10.1140/epjp/s13360-023-04795-4
https://doi.org/10.1103/PhysRevD.106.042006
https://www.zooniverse.org/projects/zooniverse/gravity-spy


i. Detector design, operation and characterisation
● How can ML/AI help design the next detector generation

(Einstein Telescope, Cosmic Explorer, future space missions)...?

● Can we embed more ML/AI into the day-to-day detector operation?
(control loops, lock acquisition and loss prevention, …) ( → e.g. YOLO point absorber detection, Goode+ 2411.16104)

● More production uses for improved noise subtraction and glitch mitigation?
(e.g. DeepClean [Saleem+2024 CQG41,195024], DeepExtractor [Dooney+ 2501.18423])

● ML/AI for hunting narrow spectral lines, which especially affect long-duration signal searches?
● Realistic noise simulation (e.g. Gengli glitch generator: Lopez+ 2205.09204)

● Improved automation of calibration and detector characterisation tasks:
currently severely person-power limited and a key dependency for all LVK observational results
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open problems & 
future directions

CEET LISA
[Abac+ 2503.12263] [Evans+ 2109.09882] [Amaro-Seoane+2020]

https://arxiv.org/abs/2411.16104
https://doi.org/10.1088/1361-6382/ad708a
https://arxiv.org/abs/2501.18423
https://arxiv.org/abs/2205.09204
https://arxiv.org/abs/2503.12263
https://arxiv.org/abs/2109.09882


ii. Compact binary coalescences
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● Signal waveforms can be predicted from General Relativity
(models based on analytical+numerical results)

● “Searches”: find candidates and estimate their significance:
○ multiple matched-filter pipelines (fixed template banks)
○ weakly-modelled pipelines too

● “Parameter estimation”: Bayesian inference
● Challenges:

○ full generic parameter space coverage
(e.g. orbital precession and eccentricity)

○ search efficiency in periods affected by non-stationary noise
○ computational cost of full Bayesian inference
○ robustness of Bayesian inference in the presence of noise glitches
○ latency for public alerts (enabling telescope follow-up)

state of 
the art

[LVC2016 PRX6,041015]  

a review: 
Chatziioannou+ 
2409.02037

https://doi.org/10.1103/PhysRevX.6.041015
https://arxiv.org/abs/2409.02037


ii. Compact binary coalescences – searches
● Main promise of ML: front-load computational cost to training phase, find candidates even faster
● GW g2net-Kaggle challenge* and MLGWSC-1 [Schäfer+2023 PRD107,023021]:

standardised data sets to compare ML solutions to each other, and standard matched filter
● AresGW** [Nousi+2023 PRD108,024022, Kolonari+2025 MLST6,015054], based on ResNet:

strong performance on MLGWSC-1, 8 new GW candidates reported from O3 data
● SAGE*** [Nagarajan&Messenger 2501.13846], OSNet feature extractor + ResNet/CBAM classifier:

further improvements on MLGWSC-1 over AresGW and matched filter
○ paper also highlights 11 types of biases that challenge CBC detection with ML:

training set construction, spectral bias, etc
● Gains can come from certain parameter space regions and/or better performance in noisy data.
● Caveat: ML submissions often optimised to the specific parameter space of the challenge,

which could also be done to improve performance of standard methods!
(e.g. Kumar&Dent 2024 PRD110,043036) 
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highlight 
example

[*] kaggle.com/c/g2net-gravitational-wave-detection (2021)  |  [**] github.com/vivinousi/gw-detection-deep-learning  |  [***] github.com/nnarenraju/sage 
 

More examples:
Trovato+2024 CQG41,125003
Marx+ 2403.18661 

https://doi.org/10.1103/PhysRevD.107.023021
https://doi.org/10.1103/PhysRevD.108.024022
https://doi.org/10.1088/2632-2153/adb5ed
https://arxiv.org/abs/2501.13846
https://doi.org/10.1103/PhysRevD.110.043036
https://www.kaggle.com/c/g2net-gravitational-wave-detection/
https://github.com/vivinousi/gw-detection-deep-learning
https://github.com/nnarenraju/sage
https://doi.org/10.1088/1361-6382/ad40f0
https://arxiv.org/abs/2403.18661


ii. Compact binary coalescences – inference
● DINGO [Dax+2021 PRL127,241103, 2023 PRL130,171403]:

neural posterior estimation (with normalising flows)
in seconds–minutes instead of hours–days per event

 

● initially working best for high-mass, short binary-black-hole signals,
now also extended to binary neutron stars [Dax+2025 Nature 639,49-53]

● special promise for otherwise extremely expensive waveforms,
e.g. including orbital eccentricity [Gupte+ 2404.14286]
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highlight 
example

[Dax+2023 PRL130,171403][Dax+2021 PRL127,241103]

[github.com/dingo-gw/dingo]

Other examples:
Nessai: Williams+2021 PRD103,103006
Peregrine: Bhardwaj+2023 PRD108,042004
AMPLFI: Chatterjee+ 2407.19048 

https://doi.org/10.1103/PhysRevLett.127.241103
https://doi.org/10.1103/PhysRevLett.130.171403
https://doi.org/10.1038/s41586-025-08593-z
https://arxiv.org/abs/2404.14286
https://doi.org/10.1103/PhysRevLett.130.171403
https://doi.org/10.1103/PhysRevLett.127.241103
https://github.com/dingo-gw/dingo
https://doi.org/10.1103/PhysRevD.103.103006
https://doi.org/10.1103/PhysRevD.108.042004
https://arxiv.org/abs/2407.19048


ii. Compact binary coalescences
● optimal network architectures and training methods to deal with the typical kinds of biases 

identified by 2501.13846 and with the full complexities of real detector data
● fair comparisons between ML and “traditional” search algorithms, avoiding fine-tuning
● finding the right mix for fruitful coexistence of fast neural and “full” Bayesian inference
● passing detailed LVK scientific&code review and operational stability criteria for production 

runs, including low-latency alerts (gracedb.ligo.org | emfollow.docs.ligo.org/userguide)

● ML in waveform modeling itself
● future detectors:

○ longer signal durations
(e.g. Hu+2412.03454, Dax+2025 Nature 639,49-53)

○ huge detection rates ( → overlapping signals!)
(e.g. Langendorff+2023 PRL.130.171402, Alvey+ 2308.06318, 
 Santoliquido+ 2504.21087)
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open problems & 
future directions

https://arxiv.org/abs/2501.13846
https://gracedb.ligo.org/
https://emfollow.docs.ligo.org/userguide/
https://arxiv.org/abs/2412.03454
https://doi.org/10.1038/s41586-025-08593-z
https://doi.org/10.1103/PhysRevLett.130.171402
https://arxiv.org/abs/2308.06318
https://arxiv.org/abs/2504.21087


iii. GW bursts
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● less well-modeled GW transients: eccentric BBHs, supernovae, magnetars, cosmic strings, …
● … and unknown unknowns!
● most LVK algorithms based on some form of excess power

and searches for correlated structures in time-frequency spectrograms
● also possible coherently across multiple detectors
● basically: anomaly detection and pattern recognition
● weakly-modeled techniques,

such as wavelet decomposition,
also allow signal reconstruction

● everything already on a continuum
towards ML (e.g. are KDEs ML…?)

state of 
the art

[Drago+2021 JsoftX14,100678]

[LVC2016 PRD93,122004]

https://doi.org/10.1016/j.softx.2021.100678
https://doi.org/10.1103/PhysRevD.93.122004


iii. GW bursts

● MLy pipeline
○ Skliris+2024 PRD110,104034

○ git.ligo.org/mly/mly 

● dual architecture for coincidence
and coherent modes across detectors

● first tested on LIGO-Virgo O2 data
● now LVK-reviewed and running

“in production” on O4 data
[emfollow.docs.ligo.org/userguide/analysis/searc
hes.html#unmodeled-search]
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highlight 
example

https://doi.org/10.1103/PhysRevD.110.104034
https://git.ligo.org/mly/mly
https://emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search
https://emfollow.docs.ligo.org/userguide/analysis/searches.html#unmodeled-search


iii. GW bursts
● extended real-world testing
● besides pure ML pipelines like MLy, also “traditional” ones getting enhanced with ML ingredients,

e.g. XGBoost postprocessing for cWB [gwburst.gitlab.io] – Mishra+2021 PRD104,023014
→ used on O3 data in Szczepańczyk+2023 PRD107,062002, Mishra+2025 PRD111,023054

● bridging the gap between “modelled” and “unmodelled burst” analyses
for complicated sources like supernovae, with simulation-based inference etc.

● pure anomaly detection frameworks for the known unknowns
(e.g. GWAK, Raikman+2025 MLST5,025020 and 2412.19883)

● interpretable/explainable AI to understand what is being detected?
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open problems & 
future directions

https://gwburst.gitlab.io/
https://doi.org/10.1103/PhysRevD.104.023014
https://doi.org/10.1103/PhysRevD.107.062002
https://doi.org/10.1103/PhysRevD.111.023054
https://doi.org/10.1088/2632-2153/ad3a31
https://arxiv.org/abs/2412.19883


iv. Continuous Waves
● simple signal model → matched filtering
● optimal fully-coherent analysis possible for known

pulsars with full timing model from EM observations
● computationally extremely challenging

for unknown sources: large parameter space
and extremely fine required grid resolution

● semi-coherent methods provide best tradeoff so far
between sensitivity and computing cost

● similar issues for long-duration CW-like transients
from glitching pulsars, BNS remnants, …

● g2net-Kaggle challenge* mostly produced GPU-optimised
variants of “traditional” semi-coherent methods
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[Sieniawska&Bejger2019]

state of 
the art

[LIGO/T.Pyle/R.Prix]

[*] kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves  (2023)

a review: Riles2023 LRR26,3

https://www.kaggle.com/competitions/g2net-detecting-continuous-gravitational-waves
https://doi.org/10.1007/s41114-023-00044-3


iv. Continuous Waves
● Joshi&Prix 2023: “Novel neural-network architecture for continuous

gravitational waves”  [PRD108,063021]

● Identified the key challenges of neural networks applied to CWs:
○ signals not only faint, but spread across long durations,

with low local contrast and rich structure
○ morphology changes across parameter space,

Doppler shifts become more challenging at high frequencies
● For durations up to 10 days, customised CNNs can almost

reach matched-filter performance, but not yet quite.
● Joshi&Prix 2024  [PRD110,124071]:

can also generalise to a single network trained across 20–1000 Hz
26

highlight 
example

https://doi.org/10.1103/PhysRevD.108.063021
https://doi.org/10.1103/PhysRevD.110.124071


iv. Continuous Waves(-like long transients)
● BNS merger remnants: rapid spindown

● Miller+2019 PRD100,062005: How effective is machine 
learning to detect long transient gravitational waves 
from neutron stars in a real search? 

● using CNNs on spectrograms
27

highlight 
examples

● pulsar glitches can trigger CW-like transients of 
unknown duration

● Modafferi+2023 PRD108,023005: Convolutional 
neural network search for long-duration transient 
gravitational waves from glitching pulsars 

● hybrid approach:
CNN on matched-filter
intermediate data
products

https://doi.org/10.1103/PhysRevD.100.062005
https://doi.org/10.1103/PhysRevD.108.023005


iv. Continuous Waves
● still working towards a “first detection” with any method (“traditional” or ML)
● immense sensitivity gap between optimal fully-coherent matched filter

and what is computationally feasible over large parameter spaces
(factors 5–50 in “depth” below the detector noise floor)
→ in principle, ML methods could reduce this!

● also, neutron stars are known to be “messy” → make methods more robust to signal deviations?
● but need to overcome the challenges identified by PRD108,063021 and others:

○ very faint signals…
○ …with even fainter local contrast
○ …and complex morphologies
○ …that vary strongly across parameter space
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open problems & 
future directions

https://doi.org/10.1103/PhysRevD.108.063021


v. Stochastic signals and backgrounds
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● persistent signals without deterministic models
● state of the art: primarily cross-correlation between 2+ detectors
● already computationally very efficient
● key challenge: controlling correlated noise sources
● not many example applications of ML to this yet
● open problems & future directions:

○ ML noise mitigation?
○ Early-universe physics through simulation-based inference?
○ intermittent, non-Gaussian backgrounds: enabling optimal Bayesian-style search for 

stochastic background from faint CBC sources? [Smith&Thrane2018 PRX8,021019 ]

○ overlap with “burst” and CW-like searches for long-duration transients,
with possibly rather complicated waveforms (newborn neutron stars, magnetars, …)

[LVK 2021 PRD104,022005]

[APS/A.Stonebraker]

a review: Remortel+2023 
PPNP128,104003 

https://doi.org/10.1103/PhysRevX.8.021019
https://doi.org/10.1103/PhysRevD.104.022005
https://doi.org/10.1016/j.ppnp.2022.104003


vi. Beyond LVK: future detectors
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European Einstein Telescope
 – in Sardinia…?
[Abac+ 2503.12263]

[LIGO-T2200287]

CE

ET

LISA

Cosmic Explorer (US?)
[Evans+ 2109.09882]

ESA
(+NASA junior partner?)
[Amaro-Seoane+2020]

https://arxiv.org/abs/2503.12263
https://dcc.ligo.org/LIGO-T2200287/public
https://arxiv.org/abs/2109.09882


vi. Beyond LVK: Einstein Telescope
● underground cryogenic 3G detector
● primary design: 10 km triangle, single site
● alternative under discussion:

two sites with 10 km L-shaped detectors
● Abac+ “The Science of the Einstein Telescope” 2503.12263 

31[Maggiore+ JCAP03(2020)050] [INFN]

● Sardinia?
● Meuse-Rhine?
● Hungary?
● East Germany?

https://arxiv.org/abs/2503.12263
https://doi.org/10.1088/1475-7516/2020/03/050


vi. Beyond LVK: future detectors
● Increased detection rates and signal complexities

will make ML tools indispensable.
● Low-frequency sensitivity of ET&CE:

CBCs become long-duration signals
→ new challenges in waveform accuracy
     and algorithm efficiency

● LISA opens up entirely new signal types
[Afshordi+ 2311.01300],
especially extreme mass-ratio inspirals (EMRIs)
○  very long and complex waveforms,

 big challenge to model and to analyse
○ many works already exploring neural networks for these

32
[NASA]

[gwplotter.com]

https://arxiv.org/abs/2311.01300
https://gwplotter.com


Conclusions: “AI” and gravitational waves (?)
● Though often in early stages, ML methods are already making an impact across GW science.
● Recent phase transition from “proofs of concept” to the first noise mitigation, signal search and 

parameter estimation ML algorithms productively contributing to the LVK science outputs.
● Bright future ahead applying more advanced methods from the AI/ML community and penetrating 

further into the realm of “production analyses”.
● No traces of real “AI” yet – if anything, human researchers are more than ever required to use their 

own intelligence to define well-posed problems for applying ML, and to design fair assessment 
benchmarks against “traditional methods” and for successful real-world applications.

● Increased detection rates and signal complexities with final stages of LVK network,
and especially with future GW detectors, will make ML tools indispensable.

● For more details, see LRR by Cuoco, Cavaglià, Heng,
Keitel & Messenger, doi:10.1007/s41114-024-00055-8 
       (but lots of great recent work not yet included!)
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https://doi.org/10.1007/s41114-024-00055-8
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