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Overview
• Can we achieve online or pseudo-online tracking? 

=> Tracking at run-time using ML algorithms … 

• Traditional tracking (post-mortem) 
=> Iterative 
=> Does not scale 

• Using ML, specifically Transformers (still post-mortem) 
=> One-shot tracking (per event) 
=> Suitable for hardware acceleration
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This is ongoing research …
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Subatomic particle tracking
• Tracking: Reconstruct particle trajectories from recorded hits 

=> Has to happen at every event 

• Why we do this? Two main measurements: 
=> Tracking and calorimetry -> Momentum and energy 
=> Discover/study particle behaviour 

• Present algorithms use Kalman filters 
=> Not linearly scalable 
=> Multiple steps, multiple passes 
=> Cannot support HL-LHC era [2029-] (pile-up) 
=> Numerous detector HW upgrades 
=> SW and algorithm upgrades

3
Image courtesy of CERN 
ATLAS Experiment [link]

https://home.cern/science/accelerators/high-luminosity-lhc
https://twiki.cern.ch/twiki/pub/AtlasPublic/EventDisplayRun3Collisions/ATLAS_VP1_HeavyIons_CentralEvent_run461633_evt3419440_2023-09-26T19-51-47_v2.png
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Considered solutions 
Using Transformers - One-shot models

• Two models from the TrackFormers project (link to paper) 
=> Both associate hits to tracks 

• EncReg (Transformer - Encoder Regressor) 
=> Track parameter regression + clustering (HDBSCAN) 
=> Event-wide padding of data 
=> HDBSCAN is costly 

• EncCla (Transformer - Encoder Classifier) 
=> Binning of the detector space 
=> Classification of hits 
=> Batch-wide padding of data
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https://doi.org/10.1140/epjc/s10052-025-14156-3
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Considered data
• REDuced VIrtual Detector (REDVID) data 

=> 10-50 (variable count) linear tracks per event 
=> 10-50 (variable count) helical tracks per event 
=> 50-100 (variable count) helical tracks per event 

• Reduced TrackML data 
=> 10-50 (variable count) tracks per event 
=> 200-500 (variable count) tracks per event 

• Each model design is trained with datasets 
=> 5 trained models per design, 2 model sizes
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https://VirtualDetector.com/redvid
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Performance 
CPU-time, GPU-time
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Training data Model design Inference CPU-side Inference GPU-side
REDVID 10-50 linear tracks EncCla 0.1 ms 4.0 ms

REDVID 10-50 helical tracks EncCla 0.1 ms 4.1 ms

REDVID 50-100 helical tracks EncCla 0.1 ms 4.3 ms

TrackML 10-50 tracks EncCla 0.1 ms 7.0 ms

TrackML 200-500 tracks EncCla 0.1 ms 7.0 ms

REDVID 10-50 linear tracks EncReg 8.3 ms 2.4 ms

REDVID 10-50 helical tracks EncReg 8.7 ms 2.3 ms

REDVID 50-100 helical tracks EncReg 18.6 ms 4.1 ms

TrackML 10-50 tracks EncReg 5.8 ms 2.2 ms

TrackML 200-500 tracks EncReg 70.5 ms 31.9 ms
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Deployment 
A challenge on its own

• CPU 
=> Not the platform of choice when it comes to ML 
=> Pipelines have other steps with CPU as only option … 

• GPU 
=> Very good performance, highly parallel 
=> Reliance on HPC assets, clusters, … 

• FPGA 
=> Very efficient, low latency, low power 
=> Perfect for embedded and on-site deployments

7

The ultimate goal -> Achieve online or 
pseudo-online tracking performance



dr. ir. Uraz Odyurt - 2025

FPGA board and tooling
• AMD Zynq UltraScale+ MPSoC 

=> Xilinx is taken over by AMD 
=> Hybrid platform (ARM core + FPGA) 

• Tooling 
=> PyTorch and ONNX for models 
=> AMD Vitis HLS for kernel coding 
=> AMD Vivado HLS for kernel synthesising 
=> PYNQ for deployment to the board 

• hls4ml? -> Transformers are not supported (yet)

8Even if there is a tool, a blind synthesis does not involve proper analysis and optimisation.
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Conversion to ONNX
• PyTorch model format is not granular enough 

=> Not enough visibility/individual access  
to inner structure 

• ONNX (Open Neural Network Exchange) 
=> Open-source format for representing ML models 
=> Input dimensions is still required 
=> Weights, dimensions, data types, … 

• A granular model graph can be extracted

9

Supported by PyTorch -> Model + Input shape
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Development strategy
• Single computation steps 

=> The most basic you can think of is MatMul 

• Followed by sequential slices 
=> There is no need to implement individual steps 
=> These can be a combined monolithic kernel 

• Partial FPGA deployment (hybrid) 
=> Repetitive slices (reusable kernel) 
=> Data communication back and forth (costly) 
=> Would be advantageous at scale (instances in parallel)
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The ultimate goal -> Full model deployment (?)
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Fuse dataflow
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Synthesised kernel

12

Consumes ~2.1% of Configurable 
Logic Blocks (CLBs)



dr. ir. Uraz Odyurt - 2025

Impact analysis 
Floating-point precision

• ML models -> Floating-point arithmetics 

• CPUs and GPUs 
=> Follow IEEE-754 standard single (float32) or  
double (float64) precision 

• FPGAs 
=> May use different standards 
(IEEE-754, reduced precision, half-precision, fixed-point) 
=> Customised arithmetic pipelines 
=> Rounding can cause numerical drift 
=> Toolchain-specific optimisations

13

Attached memory on our 
device is: float16



dr. ir. Uraz Odyurt - 2025

Quantisation
• Quantisation: Reduce the precision of model parameters (such as 

weights and activations), making models smaller, faster, and more 
energy-efficient 

• Types: 
=> Post-Training Quantisation (PTQ) 
(convert a pre-trained model to a lower precision format) 
=> Quantisation-Aware Training (QAT) 
=> Dynamic Quantisation 
=> Static Quantisation

14
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Impact analysis 
In conjunction with quantisation

• Quantisation reduces precision 
=> Full quantisation? Usually not the case … 
=> Partial quantisation -> FPGA FP precision matters (baseline) 
=> Different layers have different sensitivities 

• All of this means: 
=> There is a large search-space for an  
effective implementation 
=> Hard to find a universal approach 
=> Based on use-case or Transformer design style

15
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Impact analysis 
Output comparison

• ARM CPU vs FPGA: 
=> MatMul step output 
=> MatMul step output ignoring seq. padding 
=> Model output (with MatMul in the loop) 
=> Model output ignoring seq. padding 

• What does it mean? 
=> Changes in one step’s result will have cascading effects 
=> Sensitivity to precision? -> Partial deployment

16
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Optimisations to consider
• Which computation steps are to be deployed on FPGA? 

=> Full model? Partial, hybrid? 

• Which computation steps are sensitive to FP precision loss? 
=> What is the impact on final hit associations? 

• Added cost of data communication vs computation gains? (hybrid) 

• Generality? 
=> Different model sizes? Different Transformer designs?

17
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Ongoing work
• Focus on repetitive model segments (Encoder layers) 

=> Low-level implementation (NumPy) ✅ 

• Experiment with Post-Training Quantisation 
=> Full? Partial? 

• Hardware memory management 
=> DMA processor 

• Automation … 
=> Slice selection, impact analysis
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Extensive benchmarking: 
- Latency 
- CLB utilisation 
- Energy 
- Tracking performance
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Thanks! 
Questions?
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