University of Twente

Dynamics-Based Maintenance (DBM) Computer Architecture for Embedded Systems (CAES)

TrackCore-F: Tracking Transformer Synthesis for Low-Latency FPGA Deployment

Arjan Blankestijn, Uraz Odyurt, Amirreza Yousefzadeh

2025-06-17 EuCAIFCon Conference

Overview

- Can we achieve online or pseudo-online tracking? => Tracking at run-time using ML algorithms ...
- Traditional tracking (post-mortem) => Iterative => Does not scale
- Using ML, specifically Transformers (still post-mortem) => One-shot tracking (per event) => Suitable for hardware acceleration

This is ongoing research ...

Subatomic particle tracking

- Tracking: Reconstruct particle trajectories from recorded hits => Has to happen at every event
- Why we do this? Two main measurements: => Tracking and calorimetry -> Momentum and energy => Discover/study particle behaviour
- Present algorithms use Kalman filters => Not linearly scalable => Multiple steps, multiple passes => Cannot support <u>HL-LHC era</u> [2029-] (pile-up) => Numerous detector HW upgrades => SW and algorithm upgrades

dr. ir. Uraz Odyurt - 2025

Event: 3419440 2023-09-26 19:51:47 CEST Image courtesy of CERN ATLAS Experiment [link]

Considered solutions Using Transformers - One-shot models

- Two models from the TrackFormers project (link to paper) => Both associate hits to tracks
- EncReg (Transformer Encoder Regressor) => Track parameter regression + clustering (HDBSCAN) => Event-wide padding of data => HDBSCAN is costly
- EncCla (Transformer Encoder Classifier) => Binning of the detector space => Classification of hits => Batch-wide padding of data

Excluding Flash-Attention

~1.5 Million parameters

Considered data

- **REDuced Virtual Detector (REDVID) data** => 10-50 (variable count) linear tracks per event => 10-50 (variable count) helical tracks per event => 50-100 (variable count) helical tracks per event
- Reduced TrackML data => 10-50 (variable count) tracks per event => 200-500 (variable count) tracks per event
- Each model design is trained with datasets => 5 trained models per design, 2 model sizes

Performance CPU-time, GPU-time

Training data	Model design	Inference CPU-side	Inference GPU-side
REDVID 10-50 linear tracks	EncCla	0.1 ms	4.0 ms
REDVID 10-50 helical tracks	EncCla	0.1 ms	4.1 ms
REDVID 50-100 helical tracks	EncCla	0.1 ms	4.3 ms
TrackML 10-50 tracks	EncCla	0.1 ms	7.0 ms
TrackML 200-500 tracks	EncCla	0.1 ms	7.0 ms
REDVID 10-50 linear tracks	EncReg	8.3 ms	2.4 ms
REDVID 10-50 helical tracks	EncReg	8.7 ms	2.3 ms
REDVID 50-100 helical tracks	EncReg	18.6 ms	4.1 ms
TrackML 10-50 tracks	EncReg	5.8 ms	2.2 ms
TrackML 200-500 tracks	EncReg	70.5 ms	31.9 ms

Deployment A challenge on its own

• CPU => Not the platform of choice when it comes to ML => Pipelines have other steps with CPU as only option ...

• GPU

- => Very good performance, highly parallel => Reliance on HPC assets, clusters, ...
- FPGA => Very efficient, low latency, low power => Perfect for embedded and on-site deployments

The ultimate goal -> Achieve online or pseudo-online tracking performance

FPGA board and tooling

- AMD Zyng UltraScale+ MPSoC => Xilinx is taken over by AMD => Hybrid platform (ARM core + FPGA)
- Tooling
 - => PyTorch and ONNX for models => AMD Vitis HLS for kernel coding => AMD Vivado HLS for kernel synthesising => PYNQ for deployment to the board
- hls4ml? -> Transformers are not supported (yet)

Even if there is a tool, a blind synthesis does not involve proper analysis and optimisation.

Conversion to ONNX

- PyTorch model format is not granular enough => Not enough visibility/individual access to inner structure
- ONNX (Open Neural Network Exchange) => Open-source format for representing ML models => Input dimensions is still required => Weights, dimensions, data types, ...

• A granular model graph can be extracted

Supported by PyTorch -> Model + Input shape

Development strategy

- Single computation steps => The most basic you can think of is MatMul
- Followed by sequential slices => There is no need to implement individual steps => These can be a combined monolithic kernel
- Partial FPGA deployment (hybrid) => Repetitive slices (reusable kernel) => Data communication back and forth (costly) => Would be advantageous at scale (instances in parallel)

The ultimate goal -> Full model deployment (?)

Synthesised kernel

11	<pre>void matmul_accel(const float* A, const float* B,</pre>
12	<pre>#pragma HLS INTERFACE m_axi port=A offset=slav</pre>
13	<pre>#pragma HLS INTERFACE m_axi port=B offset=slav</pre>
14	<pre>#pragma HLS INTERFACE m_axi port=C offset=slav</pre>
15	
16	<pre>#pragma HLS INTERFACE s_axilite port=return</pre>
17	
18	<pre>float a_local[A_ROWS][A_COLS];</pre>
19	<pre>float b_local[A_COLS][B_COLS];</pre>
20	
21	<pre>#pragma HLS ARRAY_PARTITION variable=b_local c</pre>
22	
23	// Load A into local buffer
24	for (<i>int</i> i = 0; i < A_ROWS; i++) {
25	for (<i>int</i> j = 0; j < A_COLS; j++) {
26	<pre>#pragma HLS PIPELINE</pre>
27	$a_local[i][j] = A[i * A_COLS + j];$
28	}
29	}
30	
31	// Load B into local buffer
32	for (<i>int</i> i = 0; i < A_COLS; i++) {
33	for (<i>int</i> j = 0; j < B_COLS; j++) {
34	<pre>#pragma HLS PIPELINE</pre>
35	b_local[i][j] = B[i * B_COLS + j];
36	}
37	}
38	
39	// Matrix multiply
40	for (<i>int</i> i = 0; i < A_ROWS; i++) {
41	for (<i>int</i> j = 0; j < B_COLS; j++) {
42	#pragma HLS PIPELINE
43	float sum = 0;
44	<pre>for (int k = 0; k < A_COLS; k++) {</pre>
45	<pre>sum += a_local[i][k] * b_local[k] </pre>
46	}
47	$C[i * B_COLS + j] = sum;$
40	

Consumes ~2.1% of Configurable Logic Blocks (CLBs)

dr. ir. Uraz Odyurt - 2025

complete dim=1

j];

Impact analysis Floating-point precision

- ML models -> Floating-point arithmetics
- CPUs and GPUs => Follow IEEE-754 standard single (float32) or double (float 64) precision
- FPGAs

=> May use different standards (IEEE-754, reduced precision, half-precision, fixed-point) => Customised arithmetic pipelines => Rounding can cause numerical drift => Toolchain-specific optimisations

```
void matmul_accel(const float* A, const float* B, float* C) {
 #pragma HLS INTERFACE m_axi port=A offset=slave
 #pragma HLS INTERFACE m_axi port=B offset=slave
 #pragma HLS INTERFACE m_axi port=C offset=slave
 #pragma HLS INTERFACE s_axilite port=return
 float a_local[A_ROWS][A_COLS];
 float b_local[A_COLS][B_COLS];
 #pragma HLS ARRAY_PARTITION variable=b_local complete dim=1
 for (int i = 0; i < A_ROWS; i++) {</pre>
     for (int j = 0; j < A_COLS; j++) {
         #pragma HLS PIPELINE
         a_local[i][j] = A[i * A_COLS + j];
}
// Load B into local buffer
 for (int i = 0; i < A_COLS; i++) {</pre>
     for (int j = 0; j < B_COLS; j++) {</pre>
         #pragma HLS PIPELINE
         b_local[i][j] = B[i * B_COLS + j];
 // Matrix multiply
 for (int i = 0; i < A_ROWS; i++) {</pre>
     for (int j = 0; j < B_COLS; j++) {</pre>
         #pragma HLS PIPELINE
         float sum = 0;
         for (int k = 0; k < A_COLS; k++) {</pre>
             sum += a_local[i][k] * b_local[k][j];
         C[i * B_COLS + j] = sum;
```


11 12

13

16

21

22

23 24

25

26

27 28

29

30 31

32

33

34

35

36 37

38 39

40

41

42

43

44

45 46

48

50 51

Quantisation

- energy-efficient
- Types: => Post-Training Quantisation (PTQ) (convert a pre-trained model to a lower precision format) => Quantisation-Aware Training (QAT) => Dynamic Quantisation => Static Quantisation

 Quantisation: Reduce the precision of model parameters (such as weights and activations), making models smaller, faster, and more

Impact analysis In conjunction with quantisation

- Quantisation reduces precision => Full quantisation? Usually not the case ... => Different layers have different sensitivities
- All of this means: => There is a large search-space for an effective implementation => Hard to find a universal approach => Based on use-case or Transformer design style

=> Partial quantisation -> FPGA FP precision matters (baseline)

Impact analysis Output comparison

• ARM CPU vs FPGA:

- => MatMul step output
- => MatMul step output ignoring seq. padding
- => Model output (with MatMul in the loop)
- => Model output ignoring seq. padding
- What does it mean? => Changes in one step's result will have cascading effects => Sensitivity to precision? -> Partial deployment

Instance 0:

[MatMul output]	
Mismatches:	3876 / 16000 (24.2
Min Diff:	0.0000000
Max Diff:	0.0000048
Mean Diff:	0.0000002
Std Dev:	0.0000006
[MatMul output -	- Ignoring sequence
Mismatches:	3876 / 11200 (34.6
Min Diff:	0.0000000
Max Diff:	0.0000048
Mean Diff:	0.0000003
Std Dev:	0.0000007
[Model output]	
Mismatches:	1432 / 1500 (95.47
Min Diff:	0.0000000
Max Diff:	0.00000755
Mean Diff:	0.0000074
Std Dev:	0.0000062
[Model output -	Ignoring sequence
Mismatches:	982 / 1050 (93.52 ⁹
Min Diff:	0.0000000
Max Diff:	0.00000755
Mean Diff:	0.0000064
Std Dev:	0.0000069

Optimisations to consider

- Which computation steps are to be deployed on FPGA? => Full model? Partial, hybrid?
- Which computation steps are sensitive to FP precision loss? => What is the impact on final hit associations?
- Generality? => Different model sizes? Different Transformer designs?

Added cost of data communication vs computation gains? (hybrid)

Ongoing work

- Focus on repetitive model segments (Encoder layers) => Low-level implementation (NumPy)
- Experiment with Post-Training Quantisation => Full? Partial?
- Hardware memory management => DMA processor
- Automation ... => Slice selection, impact analysis

Extensive benchmarking:

- Latency
- **CLB** utilisation
- Energy
- Tracking performance

Thanks! Questions?

dr. ir. Uraz Odyurt - 2025

