
dr. ir. Uraz Odyurt - 2025

University of Twente
Dynamics-Based Maintenance (DBM)

Computer Architecture for Embedded Systems (CAES)

TrackCore-F: Tracking Transformer Synthesis
for Low-Latency FPGA Deployment

Arjan Blankestijn, Uraz Odyurt, Amirreza Yousefzadeh
————————————————————

2025-06-17
EuCAIFCon Conference

dr. ir. Uraz Odyurt - 2025

Overview
• Can we achieve online or pseudo-online tracking?

=> Tracking at run-time using ML algorithms …

• Traditional tracking (post-mortem)
=> Iterative
=> Does not scale

• Using ML, specifically Transformers (still post-mortem)
=> One-shot tracking (per event)
=> Suitable for hardware acceleration

2

This is ongoing research …

dr. ir. Uraz Odyurt - 2025

Subatomic particle tracking
• Tracking: Reconstruct particle trajectories from recorded hits

=> Has to happen at every event

• Why we do this? Two main measurements:
=> Tracking and calorimetry -> Momentum and energy
=> Discover/study particle behaviour

• Present algorithms use Kalman filters
=> Not linearly scalable
=> Multiple steps, multiple passes
=> Cannot support HL-LHC era [2029-] (pile-up)
=> Numerous detector HW upgrades
=> SW and algorithm upgrades

3
Image courtesy of CERN
ATLAS Experiment [link]

https://home.cern/science/accelerators/high-luminosity-lhc
https://twiki.cern.ch/twiki/pub/AtlasPublic/EventDisplayRun3Collisions/ATLAS_VP1_HeavyIons_CentralEvent_run461633_evt3419440_2023-09-26T19-51-47_v2.png

dr. ir. Uraz Odyurt - 2025

Considered solutions
Using Transformers - One-shot models

• Two models from the TrackFormers project (link to paper)
=> Both associate hits to tracks

• EncReg (Transformer - Encoder Regressor)
=> Track parameter regression + clustering (HDBSCAN)
=> Event-wide padding of data
=> HDBSCAN is costly

• EncCla (Transformer - Encoder Classifier)
=> Binning of the detector space
=> Classification of hits
=> Batch-wide padding of data

4

Clustering

Regressed track
parameters

(per hit) Regressor
(per cluster)

Hit
clusters

Event hit
coordinates

<latexit sha1_base64="xNCZGAxJkrnwLGDTX1oYKi5Pev8=">AAACD3icbZDLSgMxFIYz9VbrbdSlm2CxVChlRrwti25cVrAX6AxDJk3b0ExmSM4ItfQN3Pgqblwo4tatO9/G9LLQ1h8CH/85h5Pzh4ngGhzn28osLa+srmXXcxubW9s79u5eXcepoqxGYxGrZkg0E1yyGnAQrJkoRqJQsEbYvx7XG/dMaR7LOxgkzI9IV/IOpwSMFdiFQlGVsAc9BqSEH44N8ohp7Hk4V+hx8AIapxICO++UnYnwIrgzyKOZqoH95bVjmkZMAhVE65brJOAPiQJOBRvlvFSzhNA+6bKWQUnMUn84uWeEj4zTxp1YmScBT9zfE0MSaT2IQtMZEejp+drY/K/WSqFz6Q+5TFJgkk4XdVKBIcbjcHCbK0ZBDAwQqrj5K6Y9oggFE2HOhODOn7wI9ZOye14+uz3NV65mcWTRATpEReSiC1RBN6iKaoiiR/SMXtGb9WS9WO/Wx7Q1Y81m9tEfWZ8/mqWajQ==</latexit>

(r, ✓, z)⇥
hit count

Embedding

Enc-only
transformer

Track parameters
(radial, azimuthal, pitch)

Predicted
classes (tracks)

Event hit
coordinates

<latexit sha1_base64="OcCOc+Oattz2PCaknPM62i0H5IY=">AAACCnicbVDJSgNBEO2JWxy3qEcvrcEQIYQZcTsGvXiMYBbIDKGn00ma9PQM3TViDDl78Ve8eFDEq1/gzb+xsxw08UHB470qquoFseAaHOfbSi0sLi2vpFfttfWNza3M9k5VR4mirEIjEal6QDQTXLIKcBCsHitGwkCwWtC7Gvm1O6Y0j+Qt9GPmh6QjeZtTAkZqZvZz+fsC7hfwwxH2gIdMY8/Ddq7LwWvSKJHQzGSdojMGnifulGTRFOVm5strRTQJmQQqiNYN14nBHxAFnAo2tL1Es5jQHumwhqGSmKX+YPzKEB8apYXbkTIlAY/V3xMDEmrdDwPTGRLo6llvJP7nNRJoX/gDLuMEmKSTRe1EYIjwKBfc4opREH1DCFXc3IpplyhCwaRnmxDc2ZfnSfW46J4VT29OsqXLaRxptIcOUB656ByV0DUqowqi6BE9o1f0Zj1ZL9a79TFpTVnTmV30B9bnD6vdmGg=</latexit>

(x, y, z)⇥
hit count

EmbeddingTrack parameters
(radial, azimuthal, pitch)

Digitisation
(binning) Class IDs

Enc-only
transformer

Excluding Flash-Attention

~1.5 Million parameters

https://doi.org/10.1140/epjc/s10052-025-14156-3

dr. ir. Uraz Odyurt - 2025

Considered data
• REDuced VIrtual Detector (REDVID) data

=> 10-50 (variable count) linear tracks per event
=> 10-50 (variable count) helical tracks per event
=> 50-100 (variable count) helical tracks per event

• Reduced TrackML data
=> 10-50 (variable count) tracks per event
=> 200-500 (variable count) tracks per event

• Each model design is trained with datasets
=> 5 trained models per design, 2 model sizes

5

X-axis

Y-axis Barrel
sub-detector

Short-strip
sub-detector

Long-strip
sub-detector

Pixel
sub-detector

Z-axis

Complete list on website

Lots of randomisation for
non-determinism

https://VirtualDetector.com/redvid

dr. ir. Uraz Odyurt - 2025

Performance
CPU-time, GPU-time

6

Training data Model design Inference CPU-side Inference GPU-side
REDVID 10-50 linear tracks EncCla 0.1 ms 4.0 ms

REDVID 10-50 helical tracks EncCla 0.1 ms 4.1 ms

REDVID 50-100 helical tracks EncCla 0.1 ms 4.3 ms

TrackML 10-50 tracks EncCla 0.1 ms 7.0 ms

TrackML 200-500 tracks EncCla 0.1 ms 7.0 ms

REDVID 10-50 linear tracks EncReg 8.3 ms 2.4 ms

REDVID 10-50 helical tracks EncReg 8.7 ms 2.3 ms

REDVID 50-100 helical tracks EncReg 18.6 ms 4.1 ms

TrackML 10-50 tracks EncReg 5.8 ms 2.2 ms

TrackML 200-500 tracks EncReg 70.5 ms 31.9 ms

dr. ir. Uraz Odyurt - 2025

Deployment
A challenge on its own

• CPU
=> Not the platform of choice when it comes to ML
=> Pipelines have other steps with CPU as only option …

• GPU
=> Very good performance, highly parallel
=> Reliance on HPC assets, clusters, …

• FPGA
=> Very efficient, low latency, low power
=> Perfect for embedded and on-site deployments

7

The ultimate goal -> Achieve online or
pseudo-online tracking performance

dr. ir. Uraz Odyurt - 2025

FPGA board and tooling
• AMD Zynq UltraScale+ MPSoC

=> Xilinx is taken over by AMD
=> Hybrid platform (ARM core + FPGA)

• Tooling
=> PyTorch and ONNX for models
=> AMD Vitis HLS for kernel coding
=> AMD Vivado HLS for kernel synthesising
=> PYNQ for deployment to the board

• hls4ml? -> Transformers are not supported (yet)

8Even if there is a tool, a blind synthesis does not involve proper analysis and optimisation.

dr. ir. Uraz Odyurt - 2025

Conversion to ONNX
• PyTorch model format is not granular enough

=> Not enough visibility/individual access
to inner structure

• ONNX (Open Neural Network Exchange)
=> Open-source format for representing ML models
=> Input dimensions is still required
=> Weights, dimensions, data types, …

• A granular model graph can be extracted

9

Supported by PyTorch -> Model + Input shape

dr. ir. Uraz Odyurt - 2025

Development strategy
• Single computation steps

=> The most basic you can think of is MatMul

• Followed by sequential slices
=> There is no need to implement individual steps
=> These can be a combined monolithic kernel

• Partial FPGA deployment (hybrid)
=> Repetitive slices (reusable kernel)
=> Data communication back and forth (costly)
=> Would be advantageous at scale (instances in parallel)

10

The ultimate goal -> Full model deployment (?)

dr. ir. Uraz Odyurt - 2025

Fuse dataflow

Kernel
input

Split modelDevelopment flow
Based on ONNX model graph

Model
grapher

Manual slice
selection

PyTorch
model ONNX model Model graph Computation

step(s)

Model
converter

Coding for FPGA (HLS) Synthesise kernel

Synthesised
kernel

Deploy

Model splitter

Computation
kernel

Kernel
output

11

dr. ir. Uraz Odyurt - 2025

Synthesised kernel

12

Consumes ~2.1% of Configurable
Logic Blocks (CLBs)

dr. ir. Uraz Odyurt - 2025

Impact analysis
Floating-point precision

• ML models -> Floating-point arithmetics

• CPUs and GPUs
=> Follow IEEE-754 standard single (float32) or
double (float64) precision

• FPGAs
=> May use different standards
(IEEE-754, reduced precision, half-precision, fixed-point)
=> Customised arithmetic pipelines
=> Rounding can cause numerical drift
=> Toolchain-specific optimisations

13

Attached memory on our
device is: float16

dr. ir. Uraz Odyurt - 2025

Quantisation
• Quantisation: Reduce the precision of model parameters (such as

weights and activations), making models smaller, faster, and more
energy-efficient

• Types:
=> Post-Training Quantisation (PTQ)
(convert a pre-trained model to a lower precision format)
=> Quantisation-Aware Training (QAT)
=> Dynamic Quantisation
=> Static Quantisation

14

dr. ir. Uraz Odyurt - 2025

Impact analysis
In conjunction with quantisation

• Quantisation reduces precision
=> Full quantisation? Usually not the case …
=> Partial quantisation -> FPGA FP precision matters (baseline)
=> Different layers have different sensitivities

• All of this means:
=> There is a large search-space for an
effective implementation
=> Hard to find a universal approach
=> Based on use-case or Transformer design style

15

dr. ir. Uraz Odyurt - 2025

Impact analysis
Output comparison

• ARM CPU vs FPGA:
=> MatMul step output
=> MatMul step output ignoring seq. padding
=> Model output (with MatMul in the loop)
=> Model output ignoring seq. padding

• What does it mean?
=> Changes in one step’s result will have cascading effects
=> Sensitivity to precision? -> Partial deployment

16

dr. ir. Uraz Odyurt - 2025

Optimisations to consider
• Which computation steps are to be deployed on FPGA?

=> Full model? Partial, hybrid?

• Which computation steps are sensitive to FP precision loss?
=> What is the impact on final hit associations?

• Added cost of data communication vs computation gains? (hybrid)

• Generality?
=> Different model sizes? Different Transformer designs?

17

dr. ir. Uraz Odyurt - 2025

Ongoing work
• Focus on repetitive model segments (Encoder layers)

=> Low-level implementation (NumPy) ✅

• Experiment with Post-Training Quantisation
=> Full? Partial?

• Hardware memory management
=> DMA processor

• Automation …
=> Slice selection, impact analysis

18

Extensive benchmarking:
- Latency
- CLB utilisation
- Energy
- Tracking performance

Fuse dataflow

Kernel
input

Split modelDevelopment flow
Based on ONNX model graph

Model
grapher

Manual slice
selection

PyTorch
model ONNX model Model graph Computation

step(s)

Model
converter

Coding for FPGA (HLS) Synthesise kernel

Synthesised
kernel

Deploy

Model splitter

Computation
kernel

Kernel
output

dr. ir. Uraz Odyurt - 2025

Thanks!
Questions?

19

