Machine Learning-Based energy reconstruction for the ATLAS Tile **Calorimeter at HL-LHC**

Francesco Curcio on behalf of the Tile Calorimeter System 2nd EuCAIFCon, 16-20/06/2025

la Unión Europea

ASFAE/2022/008 research projects acknowledge the financial support from the MCIU vith funding from the European Union NextGenerationEU and Generalitat Valenciana

Introduction

Tile Calorimeter

- Central hadronic calorimeter of the ATLAS experiment
 - Central Long Barrel (LBA, LBC) and Extended Barrel (two readout partitions, EBA and EBC)
 - 64 modules per partition
 - Up to 45 PMTs per module
- Sampling calorimeter composed of scintillators (active) and steel (absorber)
 - Charged particles produce light in plastic scintillators
 - The light is delivered to PMTs through WLS fibres
 - Reconstructs hadronic jets
 - Contributes to reconstruct the missing transverse energy
 - Input to trigger and muon identification
- Readout fibres groups into pseudo-projective cells
 - Each cell is read out by 2 PMTs
 - 5182 cells, 9852 PMTs

Signal reconstruction

- In the TileCal readout, signals are sampled every 25 ns
- Each pulse is characterised by three main parameters:
 - Pedestal: the baseline ADC count value in absence of signal
 - · Amplitude: proportional to the deposited energy
 - Phase: the time shift relative to the nominal bunch crossing
- In the legacy system, signals are processed online and offline using a 7-coefficient linear Optimal Filtering algorithm (OF)
 - Simple and fast response filter
 - Linear combination of the samples that uses weights determined from the known pulse shape and noise correlation matrix
 - Does not perform well under severe signal pileup conditions due to non-gaussian (asymmetric) components
- Reconstruction algorithms like OF or ML-based, aim to reconstruct the amplitude and the phase

Tile Calorimeter - HL-LHC upgrade

- The upgrade of the ATLAS detector for the HL-LHC era aims to handle higher luminosity and data rates at HL-LHC
- Improved radiation hardness of electronics for high luminosity environment
- New mechanical frames to house on-detector electronics
- HV for each PMT will be created in service room ~100 m from the detector
- LV power supplies inside detector produce unified output voltage of 10 V
- Upgraded calibration systems
- Redundancy introduced in data links
- Replacement of 10% of the PMTs associated with the most exposed cells
- New readout, Front-end and Back-end electronics
 - Stream data from on-detector to new readout electronics at 40 MHz

Motivation and goals

- During Phase-II, signals will be processed per bunch crossing (BC) and passed to the first level of trigger
 - Reconstruction will be done by FPGAs
- Higher pileup and rates, together with the need for real-time reconstruction, call for much more precise algorithms

Compact Processing Module (CPM)

Check the expected performance of different ML algorithms for HL-LHC conditions

• Using ⁽⁾ PyTorch for this

 Optimise the number of parameters in order to be able to run the algorithm on FPGAs with the smallest possible latency

Motivation and goals

- During Phase-II, signals will be processed per bunch crossing (BC) and passed to the first level of trigger
 - Reconstruction will be done by FPGAs
- Higher pileup and rates, together with the need for real-time reconstruction, call for much more precise algorithms

 Check the expected performance of different ML algorithms for HL-LHC conditions

• Using ⁽⁾ PyTorch for this

 Optimise the number of parameters in order to be able to run the algorithm on FPGAs with the smallest possible latency

Signal reconstruction

Passing data from 40/80/280 MHz

- Xilinx Kintex UltraScale KU115
- Full firmware has 2x77 = 154 channels $\rightarrow 154$ NN might be needed if 2 gains are used
- Clock domain crossing and synchronisation might be an issue

Neural Network

Detector Control System

NN DCS

Samples

- The dataset is composed of ~1M consecutive bunch crossings with minimum bias average number of bunch crossings $\langle \mu \rangle = 200$ with a superimposed flat distribution with a probability of 5%
 - ~1M x 64 modules x 4 channels = ~26.5M
- Only simulation of A1 cells of the Tile Calorimeter used
 - Different cells might require different models
- Samples have been divided in train (75%), validation (12.5%) and test (12.5%) sets
- The energy in ADC count for every bunch crossing is read in both gains
 - · Models are trained on a mix between HG and LG
- After preprocessing, the samples are normalised in the range [0, 1]
- $E_{\rm true}$ is the regression target

Preprocessing

samples	BC1	BC2	BC3	BC4	BC5	BC6	BC7	BC8	BC9	 BCN
targets	BC1	BC2	BC3	BC4	BC5	BC6	BC7	BC8	BC9	 BCN

- For samples, $BC_i \rightarrow E_{reco,i}$
 - · Simulated reconstructed energy
 - · Inputs to our models
 - Sliding window of size 9
- For target, $BC_i \rightarrow E_{true,i}$
 - True energy for the i-th bunch crossing
 - Regression targets
 - Central energy of our window

samples	HG	BC1	BC2	BC3	BC4	BC5	BC6	BC7	BC8	BC9
	LG	BC1	BC2	BC3	BC4	BC5	BC6	BC7	BC8	BC9
	targets	BC1	BC2	BC3	BC4	BC5	BC6	BC7	BC8	BC9

• If BC_i saturates HG, take LG·40, else HG

samples	BC1	BC2	BC3	BC4	BC5	BC6	BC7	BC8	BC9
targets	BC1	BC2	BC3	BC4	BC5	BC6	BC7	BC8	BC9

- $E_{\rm reco}$ is the simulated readout energy from the electronics.
- If any of the BC in the window saturates LG $(E_{\rm reco}^{\rm LG} > 4095)$, drop the window.
- If any of the BC in the window has $E_{\rm reco} \leq 10$ ADC counts, drop the window.
- If the central BC has $E_{\text{true}}^{\text{HG}} \leq 10$ or $E_{\text{true}}^{\text{LG}} \geq 4095$, the window is also dropped.

- For samples, HG, $BC_i \rightarrow E_{reco,i}^{HG}$
 - Simulated reconstructed energy in the high gain reading
- For samples, LG, BC_i $\rightarrow E_{\text{reco.i}}^{\text{LG}}$
 - Simulated reconstructed energy in the low gain reading
- For target, $BC_i \rightarrow E_{true,i}$
 - True energy for the i-th bunch crossing
 - Values range from 0 to 40*4095

Models

Models

Tested models

- Multi-layer Perceptron (MLP)
- 1D Convolutional Neural Network (CNN)
- Long Short-Term Memory (LSTM)
- Bi-LSTM
- N_{params} ∈ [150,4000]
- $N_{\text{inputs}} \in [15, 13, 11, 9]$

After some optimisation converged on

- MLPs and CNNs
- $N_{\rm params} \sim 150$
- $N_{\text{inputs}} = 9$

Some of these dropped because

- Difficult to train
- Not easy to implement on FPGAs
- Suboptimal results
- Number of parameters too high
- High latency

Machine Learning

- Supervised learning
- Feed-forward networks
- No dropout

Model architecture and loss

Sequential(

(0): Linear(in_features=9, out_features=9, bias=True)

MI P

- (1): PReLU(num_parameters=6)
- (2): Linear(in_features=9, out_features=4, bias=True)
- (3): PReLU(num_parameters=4)
- (4): Linear(in_features=4, out_features=1, bias=True)

Total parameters: 148

CNN

Sequential(

```
(0): Conv1d(1, 6, kernel_size=(3,), stride=(1,), padding=(1,))
```

```
(1): PReLU(num_parameters=6)
```

- (2): Conv1d(6, 4, kernel_size=(3,), stride=(1,), padding=(1,))
- (3): PReLU(num_parameters=4)
- (4): Flatten()
- (5): Linear(in_features=36, out_features=1, bias=True)

```
Total parameters: 147
```

Hybrid loss =
$$\alpha \cdot \frac{1}{N} \sum \left| y_i - \hat{y}_i \right|$$

$$+\beta \cdot \sqrt{\frac{1}{N}\sum_{i} (y_i - \hat{y}_i)^2}$$

 Root Mean Squared Error (RMSE) used to keep same units as Mean Absolute Error (MAE)

• Using $\alpha = \beta = 0.5$

Both architectures were determined trying not to create any bottlenecks and staying under N_{params} ~ 150
Undergoing further optimisation

Results - Plots

- Plots in the following slides are divided by model and gain
 - High Gain first for all models
 - Low gain in the second part
- Plots show 2D histograms as a function of the target energies $E_{\rm true}$ of:

• Absolute error
$$E_{\text{pred}} - E_{\text{true}}$$

• Relative error $\frac{E_{\text{pred}} - E_{\text{true}}}{E_{\text{true}}}$

- Red markers show the average in absolute/relative error in each $E_{\rm true}$ bin with the correspondent standard deviation for the same bin

Results - MLP HG

Results - MLP HG

Results - CNN HG

Results - CNN HG

Results - MLP LG

Results - MLP LG

Results - CNN LG

Results - CNN LG

Summary and next steps

- HL-LHC conditions require real-time BC-wise energy reconstruction with high precision and low latency
- developing compact ML models suitable for FPGA deployment
- CNN outperforms MLPs in both gains
 - possibly because it takes into account correlations between different BC in the window
- CNN trained with hybrid loss ($0.5 \cdot MAE + 0.5 \cdot RMSE$) gives best trade-off
- More checks on CNNs and different losses will be conducted in the future, stay tuned!

Thank you for your attention!

Results - MLP hybrid loss

Results - CNN hybrid loss

Different trend in relative and absolute errors

- 1200
 - Uniform $E_{\rm true}$ distribution between 0 and 500 ADC counts
 - gaussian $E_{\rm true}$ distribution in each bin centred in the central $E_{\rm true}$ of that bin (125 and 325) with std = 50 and 20,respectively
 - NB not real data, just toy model
 - no inference from the model