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Introduction



Tile Calorimeter
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• Central hadronic calorimeter of the ATLAS 
experiment

• Central Long Barrel (LBA, LBC) and Extended 
Barrel (two readout partitions, EBA and EBC)

• 64 modules per partition
• Up to 45 PMTs per module

• Sampling calorimeter composed of scintillators 
(active) and steel (absorber)

• Charged particles produce light in plastic 
scintillators

• The light is delivered to PMTs through WLS 
fibres

• Reconstructs hadronic jets
• Contributes to reconstruct the missing 

transverse energy
• Input to trigger and muon identification

• Readout fibres groups into pseudo-projective cells
• Each cell is read out by 2 PMTs
• 5182 cells, 9852 PMTs

LBA/C Long Barrel A/C
EBA/C Extended Barrel A/C
PMT Photo Multiplier Tube
WLS Wave Length Shifting
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Signal reconstruction
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• In the TileCal readout, signals are sampled every 25 ns
• Each pulse is characterised by three main parameters:

• Pedestal: the baseline ADC count value in 
absence of signal

• Amplitude: proportional to the deposited energy
• Phase: the time shift relative to the nominal bunch 

crossing
• In the legacy system, signals are processed online and 

offline using a 7-coefficient linear Optimal Filtering 
algorithm (OF)

• Simple and fast response filter
• Linear combination of the samples that uses 

weights determined from the known pulse shape 
and noise correlation matrix

• Does not perform well under severe signal pileup 
conditions due to non-gaussian (asymmetric) 
components

• Reconstruction algorithms like OF or ML-based, aim to 
reconstruct the amplitude and the phase

Optimal Filtering

A =
n

∑
i=1

ai(Si − p)

τ =
1
A

n

∑
i=1

bi(Si − p)

high and low gain (HG, LG)
Amplitudes are measured in 2 

gains, with a factor of 40 
difference, both with 12-bit ADCs 
to maintain 10 MeV precision at 

energies < 10 GeV while avoiding 
saturation at high energies.

ADC Analog-to-Digital Converter



Tile Calorimeter - HL-LHC upgrade
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• The upgrade of the ATLAS detector for the HL-
LHC era aims to handle higher luminosity and 
data rates at HL-LHC

• Improved radiation hardness of electronics for 
high luminosity environment

• New mechanical frames to house on-detector 
electronics

• HV for each PMT will be created in service 
room ~100 m from the detector

• LV power supplies inside detector produce 
unified output voltage of 10 V

• Upgraded calibration systems
• Redundancy introduced in data links
• Replacement of 10% of the PMTs associated 

with the most exposed cells
• New readout, Front-end and Back-end 

electronics
• Stream data from on-detector to new 

readout electronics at 40 MHz

mD4

mD5

128 SDs for LB modules
consist of 4 MDs

(45 PMTs)

128 SDs for EB modules
consist of 3 MDs + 2mDs

(32 PMTs)

HV High Voltage
LV Low Voltage

PMT Photo Multiplier Tube
MD Mini Drawer
mD micro Drawer
SD Super Drawer



Motivation and goals
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• Check the expected performance of different ML 
algorithms for HL-LHC conditions

• Using  for this

• Optimise the number of parameters in order to 
be able to run the algorithm on FPGAs with the 
smallest possible latency

Compact Processing Module (CPM) 

• During Phase-II, signals will be processed per 
bunch crossing (BC) and passed to the first 
level of trigger

• Reconstruction will be done by FPGAs
• Higher pileup and rates, together with the need 

for real-time reconstruction, call for much more 
precise algorithms



Motivation and goals

7

• Check the expected performance of different ML 
algorithms for HL-LHC conditions

• Using  for this

• Optimise the number of parameters in order to 
be able to run the algorithm on FPGAs with the 
smallest possible latency

• During Phase-II, signals will be processed per 
bunch crossing (BC) and passed to the first 
level of trigger

• Reconstruction will be done by FPGAs
• Higher pileup and rates, together with the need 

for real-time reconstruction, call for much more 
precise algorithms



Signal reconstruction
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• Xilinx Kintex UltraScale KU115

• Full firmware has 2x77 = 154 channels  154 NN might be 
needed if 2 gains are used

• Clock domain crossing and synchronisation might be an issue

• Passing data from 40/80/280 MHz

→
Firmware Block Latency

Uplink 50 ns, 2 BC

Data Decoder 12.5 ns, 0.5 BC
Energy reconstrucion +

sample delay 225 ns, 9 BC

Trigger Packer 12.5 ns, 0.5 BC

Trigger Interface 25 ns, 1 BC

Total 325 ns, 13 BC

2 x 
TileCal

Modules

Uplink

Downlink

BCR
(FELIX)

Decoder

Integrator DCS

Encoder

Energy & 
Time Reco

IPBus

Pipelines

L0

Felix
Packer

Trigger
Packer

GbE
Block diagram of the Kintex Ultrascale firmware

Felix

TDAQi

BC Bunch Crossing
NN Neural Network

DCS Detector Control System



Samples
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• The dataset is composed of ~1M consecutive bunch 
crossings with minimum bias average number of  
bunch crossings  = 200 with a superimposed flat 
distribution with a probability of 5%

• ~1M x 64 modules x 4 channels = ~26.5M
• Only simulation of A1 cells of the Tile Calorimeter used

• Different cells might require different models
• Samples have been divided in train (75%), validation 

(12.5%) and test (12.5%) sets
• The energy in ADC count for every bunch crossing is 

read in both gains
• Models are trained on a mix between HG and LG

• After preprocessing, the samples are normalised in the 
range [0, 1]

•  is the regression target

⟨μ⟩

Etrue



Preprocessing
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samples BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 … BCN

targets BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 … BCN

BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9

BC5

BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10

BC6

BC3 BC4 BC5 BC6 BC7 BC8 BC9 BC10 BC11

BC7

Window 1

Window 2

Window 3

BC1 … BC9

BC5

BC2 … BC10

BC6

BC3 … BC11

BC7

Data

Regression targets

BC Bunch Crossing

• For samples, BC  
• Simulated reconstructed energy 
• Inputs to our models 
• Sliding window of size 9 

• For target, BC  
• True energy for the i-th bunch 

crossing 
• Regression targets 
• Central energy of our window

i → Ereco,i

i → Etrue,i



Preprocessing

11

samples
HG BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9

LG BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9

targets BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9

• If BC  saturates HG, take LG 40, else HGi ⋅

samples BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9

targets BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9

•  is the simulated readout energy from the 
electronics.

• If any of the BC in the window saturates LG 
( ), drop the window.

• If any of the BC in the window has 
 ADC counts, drop the window.

• If the central BC has  or 
, the window is also dropped.

Ereco

ELG
reco > 4095

Ereco ≤ 10
EHG

true ≤ 10
ELG

true ≥ 4095
BC Bunch Crossing

• For samples, HG, BC  
• Simulated reconstructed energy in 

the high gain reading 
• For samples, LG, BC  

• Simulated reconstructed energy in 
the low gain reading 

• For target, BC  
• True energy for the i-th bunch 

crossing 
• Values range from 0 to 40*4095

i → EHG
reco,i

i → ELG
reco,i

i → Etrue,i



Models



Models
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Tested models

• Multi-layer Perceptron (MLP)

• 1D Convolutional Neural Network (CNN)

• Long Short-Term Memory (LSTM)

• Bi-LSTM

•

•

Nparams ∈ [150,4000]

Ninputs ∈ [15,13,11,9]

Some of these dropped because

• Difficult to train

• Not easy to implement on FPGAs

• Suboptimal results

• Number of parameters too high

• High latency

After some optimisation converged on

• MLPs and CNNs

•

•

Nparams ∼ 150

Ninputs = 9

Machine Learning

• Supervised learning

• Feed-forward networks

• No dropout



Model architecture and loss
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MLP
Sequential(
  (0): Linear(in_features=9, out_features=9, bias=True)
  (1): PReLU(num_parameters=6)
  (2): Linear(in_features=9, out_features=4, bias=True)
  (3): PReLU(num_parameters=4)
  (4): Linear(in_features=4, out_features=1, bias=True)
)

CNN
Sequential(
    (0): Conv1d(1, 6, kernel_size=(3,), stride=(1,), padding=(1,))
    (1): PReLU(num_parameters=6)
    (2): Conv1d(6, 4, kernel_size=(3,), stride=(1,), padding=(1,))
    (3): PReLU(num_parameters=4)
    (4): Flatten()
    (5): Linear(in_features=36, out_features=1, bias=True)
  )

Total parameters: 148

Total parameters: 147

• Both architectures were 
determined trying not to create 
any bottlenecks and staying 
under 

• Undergoing further optimisation
Nparams ≃ 150

•

• Root Mean Squared Error (RMSE) used to 
keep same units as Mean Absolute Error 
(MAE)

• Using 

Hybrid loss = α ⋅
1
N ∑

i

yi − ̂yi

+β ⋅
1
N ∑

i
(yi − ̂yi)2

α = β = 0.5



Results



Results - Plots
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• Plots in the following slides are divided by model and gain 

• High Gain first for all models 

• Low gain in the second part 

• Plots show 2D histograms as a function of the target energies  of: 

• Absolute error  

• Relative error  

• Red markers show the average in absolute/relative error in each  bin with the 
correspondent standard deviation for the same bin

Etrue

Epred − Etrue

Epred − Etrue

Etrue

Etrue



Results - MLP HG
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Epred − Etrue
Etrue

= − 1 → Epred = 0
Diagonal line in bottom part 
of the plot is  or Epred ≃ 0
Epred − Etrue ≃ − Etrue

 ADC Countsσerr
avg = 99.76

Results - MLP HG



Results - CNN HG
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Results - CNN HG
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Step in  gone
Epred − Etrue

Etrue
= − 1

• Overall improvement in 
reconstruction

• CNN takes correlations 
between bunch crossings 
into account

 ADC Countsσerr
avg = 72.12



Results - MLP LG
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• Different scales with 
respect to HG

• Less noise and pileup 
less important in LG

slight asymmetry in the 
bin-average distribution

Results - MLP LG

 ADC Countsσerr
avg = 10.75



Results - CNN LG
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Results - CNN LG
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slight asymmetry in the 
bin-average distribution

better results than in 
the MLP case

 ADC Countsσerr
avg = 8.36



Summary and next steps
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• HL-LHC conditions require real-time BC-wise energy reconstruction with high 
precision and low latency

• developing compact ML models suitable for FPGA deployment
• CNN outperforms MLPs in both gains

• possibly because it takes into account correlations between different BC in the 
window

• CNN trained with hybrid loss ( ) gives best trade-off
• More checks on CNNs and different losses will be conducted in the future, stay 

tuned!

0.5 ⋅ MAE + 0.5 ⋅ RMSE



Thank you for your attention!



BACKUP



Results - MLP hybrid loss
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HG LG



Results - CNN hybrid loss
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HG LG
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• Uniform  distribution between 0 
and 500 ADC counts

• gaussian  distribution in each bin 
centred in the central  of that bin 
(125 and 325) with std = 50 and 20, 
respectively

• NB not real data, just toy model
• no inference from the model

Etrue

Etrue
Etrue

Different trend in relative and absolute errors


