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Compact Muon Solenoid
CMS detector

• Muon Detectors: Capture muon tracks


• Superconducting magnet (3.8 T)


• Hadronic Calorimeter (HCAL): Measures 
energy of hadrons 

• Electromagnetic Calorimeter (ECAL): 
Measures energy of photons and electrons


• Silicon Tracker: Detects charged 
particles, reconstructs trajectories
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High Lumi LHC

• HL-LHC: 200 p-p collisions per bunch crossing (pile-up) 


• Need: precise detection and fast data processing for high luminosity
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Compact Muon Solenoid

Silicon sensors within a single sector of the Phase-2 CMS tracker [CMS 
collaboration]

Phase 2 Tracker

• Silicon detectors: excellent 
spatial resolution 𝑂(𝜇𝑚) 

• Outer, Inner Tracker 

• Challenge: fast & low-power 
pattern recognition


LHC bunch-crossing 



• Use of Spiking Neural Networks: allow high efficiency with low power 
consumption.


• How? Identification of particle tracks via unsupervised pattern recognition

The Goal 
Spiking Neural Networks for pattern recognition 
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Neuromorphic Computing
What is neuromorphic computing?

• Emulates the structure and function of the human brain 


• Spiking Neural Networks (SNNs): core model used in NC


• SNNs use discrete spikes to transmit signals in response to 
incoming (discrete) stimuli.


• Neurons and synapses are implemented in specialized 
hardware


• Distinctive features: 

• Energy Efficiency: Consumes minimal power during 
operation


• Low Latency: Enables real-time processing
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• Synapses: Transfer discrete electrical impulses (spikes) to the neuron


• Neurons: model the behavior of Membrane Potential (𝑉𝑚𝑒𝑚)

Model of a biological neuron 
Leaky integrate-and-fire neuron (LIF)
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𝑉𝑚𝑒𝑚

• Integrate incoming signals  
—  fire when threshold is 
reached


• Include a leaky component 
— past inputs decay over 
time

Afferents



• Excitatory Postsynaptic Potential (EPSP): 
• Input spikes increase membrane potential


• Neuron activation: 

• Behavior after 𝑉𝑚𝑒𝑚  exceeds threshold T


• Inhibitory Post-Synaptic Potential (IPSP): 

• Competition between neurons of same layer -> 

Specialization
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Model of a biological neuron 
Leaky integrate-and-fire neuron (LIF)
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• Membrane Potential (𝑉𝑚𝑒𝑚):

Plot from our SNN



Learning algorithm: STDP
Biological process: Spike timing-dependent plasticity

8

[arXiv:1907.09126]

• Synaptic strength: based on the relative timing between input spikes and neuron firing

• Δt > 0: 
• Synapse strengthened → Long-Term Potentiation (LTP)


• "Causal": incoming spike contributed the firing 


• Δt < 0: 
• The synapse is weakened → Long-Term Depression (LTD)


• “Non-causal": incoming spike didn’t help the firing

Time-sensitive: Neuron respond to patterns that precede firing 

P.S. Simple model, we have learned delays…



Network architecture
Spiking Neural Network for Detector Signal Processing

• 10 Afferents: Fibers that carry electrical 
signals from the detector layers to the 
neural network


• All connect to both L0 and L1 neurons


• Two layers of neurons: 6 L0, 6 L1


• Supports dropout for regularization


• 20 hyperparameters to be optimize
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Architecture with layered connectivity & lateral 
inhibition
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Information Encoding
From the detector to the SNN

• Concept Overview: 

• Project the 3D event in 2D


• Scanning: to encode spatial geometry as 
time-dependent signals


• Detector layers → mapped to afferents


• Readout frequency:  f = 40 MHz, ω = (2π + δ) · f
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δ: handle border effects



Information Encoding

• A bit more difficult…


• Right: Example of event used for SNN 


• Bottom: Time-encoded events with and without 
tracks
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From the detector to the SNN

Transverse plane projection of an event with an 
anti-muon, 𝑝𝑇 = 1 𝐺𝑒𝑉 with 𝑁ℎ𝑖𝑡 = 300



Dataset
Monte Carlo simulations

• For training: 1 particle per event

• Muons: q = −1, 𝑝𝑇 ∈ {1, 3, 10} 𝐺𝑒𝑉


• Anti-muons: q = +1, 𝑝𝑇 ∈ {1, 3, 10} 𝐺𝑒𝑉


• Contains some interactions with the tracker 
material


• We superimpose a Poissonian background


• ~𝑁BGKℎ𝑖𝑡 = 300, ~𝑁SIGℎ𝑖𝑡 = 10


• Simulated 100K events
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Transverse plane projection of an event with an 
anti-muon, 𝑝𝑇 = 1 𝐺𝑒𝑉 with 𝑁ℎ𝑖𝑡 = 300



Evaluation functions
Acceptance, Fake Rate, Selectivity

• Acceptance per class: 

• Fraction of signal events in which at least one 
neuron is activated


• Fake Rate: 


• Quantifies how often the SNN activates 
during background-only events.
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Aq,pt
=

N SEv(q, pt) in which at least 1 neuron was activated
TOT SEv(q, pt)

F =
N BEvs in which at least 1 neuron was activated

TOT BEvs

• Selectivity: 


• Neuron's ability to discriminate particle classes (e.g. 1 GeV vs. 10 GeV muons). 


• Based on mutual information: higher selectivity = more task-specific neurons.



Results 
Performance of Network on Test Dataset

• Test dataset: 25K events


• Architecture: Increased network complexity


• 10 neurons in L1 layer 

• Performance Highlights:


• High acceptance observed, in N8 

• Low fake rate across all neurons


• ⚠ Limited class specialization 
→ Most neurons activate across multiple 
particle classes (see heatmap)
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Heatmap of neuron activations across particle classes



Genetic Algorithm
Efficiently optimize network configuration

• Explore the high-dimensional hyperpar space 

• NSGA-II (Non-dominated Sorting Genetic Algorithm 
II), pyGAD library


• Suited for problems with multiple conflicting 
objectives


• maximizing network Acceptance, Selectivity 


• minimizing the Fake Rate 

• Goal: find the best pareto solutions given the 3 
objectives
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Results after Genetic Algorithm

16

Heatmap of neuron activations across particle classes
• Test dataset: 25K events


• Architecture: 6-6, no need to increase 
network complexity 

• High acceptance in all signal classes


• 🎯 Strong class-to-neuron specialization:


• Each particle class is primarily detected by a 
specific neuron 

• Neuron 4 → +3 GeV, Neuron 5 → –3 GeV


• Low fake rate across all neurons (~0.1–
0.6%)

Performance of Network on Test Dataset



• Bottom: Evaluation SNN’s 
performance as a function of the 
angular difference between track


• Perfomance decrease: ∆ϕ = 300  

∆ϕ= 300  

Multi Tracks

• Events containing 10 track


• Top: Good neurons activations to the 
input tracks (1st, 2nd tracks)


• Affecting performance


• Temporal overlap

• Neurons refractory periods (~0.8 ns) 
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Multi-particle events



Summary
Key Takeaways

• Successfully demonstrated SNNs for unsupervised particle tracking 

• Opening the way to application of NC for particle tracking 


• Achieved: high accuracy, low fake rate, and clear neuron-class specialization


• Strong potential for real-time, hardware-based implementation at colliders
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Future work?

• 3D event encoding, increase SNN complexity…



Backup



Training the SNN
Evolution of the Network Across Four Stages

Stage 3: Fine-tuning at High Noise (⟨𝑁bkg = 
100) 

•  Starts from Stage 2’s network


•  GA explores narrower hyperparameter ranges


•  Delay learning rates further reduced


•  Focus: incremental accuracy & robustness gains

20

Stage 1: Simplified Problem with Minimal 
Background 
•  Background noise fixed at 𝑁bkg = 100


•  GA optimizes 3-class task: μ⁻ with 𝑝T ∈ {1, 3, 10} GeV


•  Delay learning improves selectivity, reduces FP

•  Full hyperparameter space explored


Stage 2: Incorporating Antimuon Classification 
•  Builds on Stage 1's best network

•  Adds μ⁺ events → expanded classification

•  Specialized neurons duplicated & mirrored

•  Weight fixed → Fine tuning delays




Encode the 3D
Future work 

• 2 stage process: 


• 1st Stage: use only the projections, 
identify most of the tracks 


• 2nd Stage: RE-encode the 
information of the phi, R (Radial 
distance in the transv. Plane) 
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• Population Initialization:  
• Randomly generate SNN configurations (different hyper-par)


• Evaluation Phase:  
• Evaluate individuals based on the 3 objectives


• Non-Dominated Sorting: 
•  Rank solutions using Pareto dominance 

• Crowding Distance:  
• Select diverse solutions across the Pareto front (variability) 

• Reproduction:  
• Generate a new population from "Parents" + mutation 
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How does it work? 

Main loop:

NSGA 2



NSGA 2
Genetic algorithm
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Original Population

New generated 
(offspring) Population Q 
(From genes of Pt)


- Mutations

Evaluation of individuals 

The new population is as big as the original 

IF same performance 

(F1 and F2)

F1 is the leading Pareto front followed by F2 and F3



NSGA 2
Genetic algorithm

• How does it really work?


• Non dominated sorting:


• Increase in weight, the value also increases


• some individuals have lesser value while 
being heavier


• Green points: there is no individual that is 
both less heavy and more valuable than them


• Green: all the non-dominated individuals in 
the graph (Pareto Front 1)
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IF same performance 

(F1 and F2)



Weights and Decays
Modified Spike-Timing-Dependent Plasticity

• Synaptic delays are another degree of freedom that we could exploit


• Delay adaptation to different signals -> improve the specialization
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I. Hammouamri et al., “Learning Delays in Spiking Neural Networks

using Dilated Convolutions with Learnable Spacings”, arXiv preprint,
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Weight and Decay 
Modified Spike-Timing-Dependent Plasticity

• Synaptic delays are another degree of freedom that we could exploit


• Delay adaptation to different signals -> improve the specialization
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How much power do they consume? 
Energy Efficiency

• Normal CPUs/GPUs can consume tens to hundreds of 
watts per TOPS for neural-like workloads.


• Neuromorphic chips like Intel’s Loihi or IBM’s TrueNorth: 
milliwatts per TOPS

• ~1000x or more efficient on specific neural tasks.


• BUT: human brain with (~200 trillion synaptic operations/s), 
high complexity requires about 20W
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• Energy Efficiency: Consumes minimal power during operation


• Why? Sparse activity: Neurons energy use is minimal when not spiking.



More on Neuron Model
Leaky integrate-and-fire neuron (LIF)
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More on Neuron Model
Leaky integrate-and-fire neuron (LIF)
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More on Neuron Model
Leaky integrate-and-fire neuron (LIF)
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More on Evaluation Functions
Complete definitions
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