

LULEÅ UNIVERSITY OF TECHNOLOGY

Unsupervised Particle Tracking with Neuromorphic Computing

Fabio Cufino, E. Coradin, T. Dorigo, F. Sandin, M. Tosi, M. Awais, E. Lupi, J. Raji, E. Porcu

Fabio Cufino - 17 Jun 2025

Compact Muon Solenoid CMS detector

- Muon Detectors: Capture muon tracks
- Superconducting magnet (3.8 T)
- Hadronic Calorimeter (HCAL): Measures energy of hadrons
- **Electromagnetic Calorimeter (ECAL)**: Measures energy of photons and electrons
- Silicon Tracker: Detects charged particles, reconstructs trajectories

Compact Muon Solenoid High Lumi LHC

- HL-LHC: 200 p-p collisions per bunch crossing (pile-up)
- **Need:** precise detection and fast data processing for high luminosity

Phase 2 Tracker

- Silicon detectors: excellent spatial resolution $O(\mu m)$
- **Outer, Inner Tracker**
- **Challenge:** fast & low-power pattern recognition

Silicon sensors within a single sector of the Phase-2 CMS tracker [CMS collaboration]

The Goal

Spiking Neural Networks for pattern recognition

consumption.

Use of Spiking Neural Networks: allow high efficiency with low power

How? Identification of particle tracks via unsupervised pattern recognition

Neuromorphic Computing What is neuromorphic computing?

- **Emulates** the structure and function of the human brain
- Spiking Neural Networks (SNNs): core model used in NC
- SNNs use **discrete spikes** to transmit signals in response to incoming (discrete) stimuli.
- Neurons and synapses are implemented in specialized hardware
- **Distinctive features:**
 - **Energy Efficiency:** Consumes minimal power during operation
 - Low Latency: Enables real-time processing

Model of a biological neuron Leaky integrate-and-fire neuron (LIF)

- Synapses: Transfer discrete electrical impulses (spikes) to the neuron
- Neurons: model the behavior of Membrane Potential (Vmem)
 - Integrate incoming signals

 fire when threshold is
 reached
 - Include a leaky component

 past inputs decay over
 time

Model of a biological neuron Leaky integrate-and-fire neuron (LIF)

- Membrane Potential (Vmem):
 - **Excitatory Postsynaptic Potential (EPSP):**
 - Input spikes increase membrane potential
 - **Neuron activation:**
 - Behavior after V_{mem} exceeds threshold T
 - Inhibitory Post-Synaptic Potential (IPSP):
 - Competition between neurons of same layer -> Specialization

Plot from our SNN

time [ns]

Learning algorithm: STDP **Biological process: Spike timing-dependent plasticity**

- - Δt > 0:
 - Synapse strengthened \rightarrow Long-Term Potentiation (LTP)
 - "Causal": incoming spike contributed the firing
 - Δt < 0:
 - The synapse is **weakened** \rightarrow Long-Term Depression (LTD)
 - "Non-causal": incoming spike didn't help the firing

Time-sensitive: Neuron respond to patterns that precede firing

Synaptic strength: based on the relative timing between input spikes and neuron firing

[arXiv:1907.09126]

P.S. Simple model, we have learned delays...

Network architecture

Spiking Neural Network for Detector Signal Processing

- **10 Afferents:** Fibers that carry electrical signals from the detector layers to the neural network
 - All connect to both **LO** and **L1** neurons
- Two layers of neurons: 6 L0, 6 L1
 - Supports **dropout** for regularization
- 20 hyperparameters to be optimize

Architecture with layered connectivity & lateral inhibition

Information Encoding

From the detector to the SNN

- Concept Overview:
 - Project the 3D event in 2D
 - Scanning: to encode spatial geometry as time-dependent signals
 - Detector layers → mapped to afferents
- **Readout frequency:** f = 40 MHz, $\omega = (2\pi + \delta) \cdot f$

δ: handle border effects

10

Information Encoding From the detector to the SNN

- A bit more difficult...
- **Right**: Example of event used for SNN
- **Bottom:** Time-encoded events with and without tracks

Transverse plane projection of an event with an anti-muon, $p_T = 1$ GeV with Nhit = 300

11

Dataset

Monte Carlo simulations

- For training: 1 particle per event
 - Muons: q = -1, $p_T \in \{1, 3, 10\} GeV$
 - Anti-muons: q = +1, $p_T \in \{1, 3, 10\}$ GeV
- Contains some interactions with the tracker material
- We superimpose a Poissonian background
 - $\sim NBGKhit = 300, \sim NSIGhit = 10$
 - Simulated 100K events

Transverse plane projection of an event with an anti-muon, $p_T = 1$ GeV with Nhit = 300

Evaluation functions

Acceptance, Fake Rate, Selectivity

Acceptance per class:

- Fraction of signal events in which at least one neuron is activated
- Fake Rate:
 - Quantifies how often the SNN activates during background-only events.
 - Selectivity:
 - Neuron's ability to discriminate particle classes (e.g. 1 GeV vs. 10 GeV muons).
 - Based on **mutual information**: higher selectivity = more task-specific neurons.

$NSEv(q, p_t)$ in which at least 1 neuron was activated $A_{q,p_t} = -$ TOT $SEv(q, p_t)$

NBEvs in which at least 1 neuron was activated F = -TOT BEVS

Results

Performance of Network on Test Dataset

- Test dataset: 25K events
- Architecture: Increased network complexity
 - 10 neurons in L1 layer
- Performance Highlights:
 - High acceptance observed, in N8
 - Low fake rate across all neurons
 - ▲ Limited class specialization
 → Most neurons activate across multiple particle classes (see heatmap)

Heatmap of neuron activations across particle classes

Acceptance per neuron per class (in %)

14

Genetic Algorithm

Efficiently optimize network configuration

- **Explore** the high-dimensional hyperpar space
- NSGA-II (Non-dominated Sorting Genetic Algorithm) II), pyGAD library
- Suited for problems with multiple conflicting objectives
 - maximizing network Acceptance, Selectivity
 - minimizing the Fake Rate
- **<u>Goal</u>**: find the best *pareto* solutions given the 3 objectives

Results after Genetic Algorithm

Performance of Network on Test Dataset

- Test dataset: 25K events
- Architecture: 6-6, no need to increase network complexity
- High acceptance in all signal classes
- Strong class-to-neuron specialization:
- Each particle class is primarily detected by a specific neuron
 - Neuron 4 \rightarrow +3 GeV, Neuron 5 \rightarrow -3 GeV
- Low fake rate across all neurons (~0.1– 0.6%)

Heatmap of neuron activations across particle classes

Multi Tracks

Multi-particle events

- Events containing 10 track
- **Top:** Good neurons activations to the input tracks (1st, 2nd tracks)
- Affecting performance
 - Temporal overlap
 - Neurons refractory periods (~0.8 ns)
- Bottom: Evaluation SNN's performance as a function of the angular difference between track
- Perfomance decrease: $\Delta \phi = 300$

Spike Time (ns)

17

Summary **Key Takeaways**

- Successfully demonstrated SNNs for unsupervised particle tracking
 - Opening the way to application of NC for particle tracking
- Achieved: high accuracy, low fake rate, and clear <u>neuron-class specialization</u>
- **Strong potential** for real-time, hardware-based implementation at colliders

Future work?

3D event encoding, increase SNN complexity...

LULEÅ UNIVERSITY -

Training the SNN

Evolution of the Network Across Four Stages

Stage 1: Simplified Problem with Minimal Background

- Background noise fixed at Nbkg = 100
- GA optimizes 3-class task: μ^- with $pT \in \{1, 3, 10\}$ GeV
- Delay learning improves selectivity, reduces FP
- Full hyperparameter space explored

Stage 2: Incorporating Antimuon Classification

- Builds on Stage 1's best network ullet
- Adds μ^+ events \rightarrow expanded classification
- Specialized neurons duplicated & mirrored
- Weight fixed \rightarrow Fine tuning delays

Stage 3: Fine-tuning at High Noise (*N***bkg** = 100)

- Starts from Stage 2's network
- GA explores narrower hyperparameter ranges
- Delay learning rates further reduced ullet
- Focus: incremental accuracy & robustness gains ullet

Encode the 3D

Future work

- 2 stage process:
 - 1st Stage: use only the projections, identify most of the tracks
 - **2nd Stage:** RE-encode the information of the phi, R (Radial distance in the transv. Plane)

NSGA 2 How does it work?

Main loop:

- **Population Initialization:**
- **Evaluation Phase:**
- **Non-Dominated Sorting:**
 - Rank solutions using Pareto dominance
- **Crowding Distance:**
- **Reproduction:**

Randomly generate SNN configurations (different hyper-par)

• Evaluate individuals based on the 3 objectives

Select diverse solutions across the Pareto front (variability)

• Generate a new population from "Parents" + mutation

NSGA 2 **Genetic algorithm**

Original Population

New generated (offspring) Population Q (From genes of Pt)

- Mutations

K. Deb, IEEE Transtions On Evolutionary Computation Vol 6, No 2, April 2002

Evaluation of individuals

F1 is the leading Pareto front followed by F2 and F3

IF same performance (F1 and F2)

The new population is as big as the original

- 1. Create offspring and a combined population Rt
- 2. Rank and sort offspring due to performance on defined target indicators
- Take best members to 3. create new population including a good spread in solutions

NSGA 2

Genetic algorithm

- How does it really work?
- Non dominated sorting:
 - Increase in weight, the value also increases
 - some individuals have lesser value while being heavier
 - Green points: there is no individual that is both less heavy and more valuable than them
 - Green: all the non-dominated individuals in the graph (Pareto Front 1)

Weights and Decays

Modified Spike-Timing-Dependent Plasticity

- Synaptic delays are another degree of freedom that we could exploit
- Delay adaptation to different signals -> improve the specialization

I. Hammouamri et al., "Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings", arXiv preprint, 2023

Weight and Decay

Modified Spike-Timing-Dependent Plasticity

- Synaptic delays are another degree of freedom that we could exploit
- Delay adaptation to different signals -> improve the specialization

Definition 2 (STDP rule for synaptic delays).

$$\Delta d_{j} = \begin{cases} d_{+} \left[\exp\left(\frac{t_{j} - t_{i} + t_{max}}{\tau_{d_{+}}}\right) - \exp\left(\frac{t_{j} - t_{i} + t_{max}}{\tau_{d_{+}}'}\right) \right] & \text{if } t_{j} \leq t_{i} - t_{max} \Rightarrow DLTP, \\ -d_{-} \left[\exp\left(\frac{t_{i} - t_{j} - t_{max}}{\tau_{d_{-}}}\right) - \exp\left(\frac{t_{i} - t_{j} - t_{max}}{\tau_{d_{-}}'}\right) \right] & \text{if } t_{j} > t_{i} - t_{max} \Rightarrow DLTD, \\ 0 & \text{if synapse j is linking two neutors} \end{cases}$$

where t_i denotes the pre-synaptic spike arrival time, t_i represents the neuron's activation time, t_{max} indicates the EPSP signal's peak time, d_+ and d_- are the learning rates, and τ_{d_+} , τ'_{d_+} , τ_{d_-} , and τ'_{d_-} are the time constants for potentiation and depression, respectively. The rule updates the delay of synapses linking afferents to neurons.

How much power do they consume? Energy Efficiency

- Energy Efficiency: Consumes minimal power during operation
- Why? Sparse activity: Neurons energy use is minimal when not spiking.
- Normal CPUs/GPUs can consume tens to hundreds of watts per TOPS for neural-like workloads.
- Neuromorphic chips like Intel's Loihi or IBM's TrueNorth: milliwatts per TOPS
 - ~1000x or more efficient on specific neural tasks.
- **BUT**: human brain with (~200 trillion synaptic operations/s), high complexity requires about 20W

TrueNorth

1 M Neurons 256 M Synapses 5.4 B Transistors Realtime 73 mW

More on Neuron Model

Leaky integrate-and-fire neuron (LIF)

Input pulse at the synapse -> Excitatory postsynaptic potential (EPSP)

•
$$\varepsilon(t-t_j) = K \cdot \left[exp\left(-\frac{t-t_j}{\tau_m}\right) - \exp\left(-\frac{t-t_j}{\tau_m}\right)\right]$$

- τ_m : Membrane characteristic time
- τ_s : Synapse characteristic time

$$\left(\frac{t-t_j}{\tau_s}\right) \cdot \theta(t-t_j)$$

K multiplicative constant

E. Coradin - MODE Collaboration

More on Neuron Model

Leaky integrate-and-fire neuron (LIF)

Potential exceeds threshold $T \rightarrow Neuron activation \rightarrow output pulse$ •

•
$$\eta(t-t_i) = T \cdot \left\{ K_1 \cdot exp\left(-\frac{t-t_i}{\tau_m}\right) - K_2 \cdot \left[exp\left(-\frac{t-t_i}{\tau_m}\right) - exp\left(-\frac{t-t_i}{\tau_s}\right)\right] \right\} \cdot \theta(t-t_i)$$

- τ_m : Membrane characteristic time •
- τ_s : Synapse characteristic time

• K_1, K_2 multiplicative shape constants

 t_i activation time

E. Coradin - MODE Collaboration

More on Neuron Model

Leaky integrate-and-fire neuron (LIF)

- Neuron activates \rightarrow It inhibits neurons in its layer → Inhibitory postsynaptic potential (IPSP)
- $\mu(t-t_k) = -\alpha \cdot T \cdot \varepsilon(t-t_k)$

 α multiplicative intensity constant

Competition among neurons

E. Coradin - MODE Collaboration

More on Evaluation Functions Complete definitions

Definition 3 (Neuron Activation Indicator Function). *This function is used to identify events in which the neuron n has been activated at least once. A neuron is considered "activated at least once" during an event if its membrane potential exceeds the firing threshold* T_0 *or* T_1 *within the duration of the event.*

$$1_n(\epsilon) = \begin{cases} 1 & \text{if the neuron n has activated at least once during the event } \epsilon \\ 0 & \text{otherwise} \end{cases}$$

Definition 4 (Network Activation Indicator Function).

 $1(\epsilon) = \begin{cases} 1 & \text{if at least one neuron in the network has activated during event } \epsilon \\ 0 & \text{otherwise} \end{cases}$

Definition 5 (Acceptance per neuron per class). *Measures the fraction of events of class c in which the neuron n has been activated at least once.*

$$A_{n,c} = \frac{\sum_{\epsilon_c} 1_n(\epsilon_c)}{\sum_{\epsilon_c} 1}$$

Definition 6 (Fake rate per neuron). *Measures the fraction of events containing just hits of background in which the neuron n has been activated at least once.*

$$F_n = A_{n,0} = \frac{\sum_{\epsilon_0} 1_n(\epsilon_0)}{\sum_{\epsilon_0} 1}$$

Definition 9 (Selectivity of the network). *Selectivity quantifies the ability of the network to discriminate patterns and is derived from mutual information by comparing the distribution of activations across neurons and particle classes:*

$$S = \sum_{n,c} P_{n,c} \cdot \log_2\left(\frac{P_{n,c} + \delta}{P_c \cdot P_n}\right)$$

with $P_{n,c} = \frac{\sum_{\epsilon_c} 1_n(\epsilon_c)}{N_{\epsilon}}$, $P_n = \sum_{c=1}^{N_{classes}} P_{n,c}$, $P_c = \sum_{n=1}^{N_{neurons}} P_{n,c}$ and $\delta \ll 1$ to avoid numerical instabilities.

