Towards the optimization of a Muon Collider Calorimeter

F. Nardi, J. Donini, T. Dorigo, J. Kieseler, A. De Vita, Abhishek, M. Aehle, M. Awais, A. Breccia, R. Carroccio L. Chen, N. R. Gauger, R. Keidel, E. Lupi, X.T. Nguyen, F. Sandin, K. Schmidt, P. Vischia, J. Willmore

UNIVERSITÉ Clermont Auvergne

Introduction Why a Muon Collider?

- Luminosity increases with center-mass energy
 - Competitive with LINACs
 - Most 'physics-per-dollar' potential
- Heavier than electrons: less radiative losses -> Higher center mass energies
- Lepton Collider: no pile-up effects
- Rather old concept, regained interest within the post-LHC debate (Snowmass, European Strategy): possibility to have a lepton collider working at TeV scale
- Higgs Factory

⊂ σ(µµµ→H) ≃ 40000 σ (ee→H)

Possibility for BSM measurements

Introduction Why a Muon Collider?

- Beamline plans for CERN(left) and Fermilab(right).
- O(10km) rings for TeVscale collision

What

Summary of the problem

- Finite lifetime of the muon (2.2µs) implies a cloud of high-energy decay product along the beamline, which interferes with the instrumentation (Beam-Induced Background - BIB)
- During preliminary Machine-Detector Interface design, a double-cone nozzle has been included to shield the detector from BIB radiation

Visualizations from FLUKA BIB simulation. Black: neutrons, other: photons

What

Pipeline scheme

- End objective: design optimization study approached with AD techniques
- Development of a pipeline to propose an optimal configuration in terms of signal-tobackground discrimination and instrumentation cost
- Use single monochromatic photons as benchmark

What **CRILIN: Reference design**

- Reference design chosen for our studies is **CRILIN** for the Electromagnetic Calorimeter (ECal)
- Array of 1x1x4.5cm³ PbF₂ voxels, arranged in a dodecagonal prism
- 5 layers per wedge
- Modular design, easy to modify and rearrange

Modules BIB Generation

- Starting from a 750GeV FLUKA beam simulation, fed to a Geant4 detector model.
- Muon decays within 5m from interaction point
- Symmetrized to simulate contributions from both sides
- Cylindrical symmetry allows to limit the problem to a single wedge

Modules BIB Generation

- Model the BIB flux across the 5 layers by training a Gaussian Process
- Predicts BIB energy density given a (z,y) coordinate pair - uniform along the x direction
- Main motivation for a GP is ability to interpolate between layers

Modules **BIB Generation**

- Simulation is heavy (O(TB) for single event), and does not provide information on intralayer BIB depositions
- Validation: total deposit on the detection area matches simulation
- Shapes and magnitudes are reasonable, allows us to work

- For signal events we chose single monochromatic photons, energy uniformly distributed in [10,175]GeV.
- Use Geant4 to produce a dataset of 10k photons entering orthogonally in a PbF2 block.
- Saved as 2D images

- Use the dataset to train a simple GravNet-based GNN to generate photon showers given an input energy.
- Not extremely precise, but
 - Fast
 - Describes well enough shower bulk
 - Total deposit matches the target
- To be patched with conditional DDPM (Denoising) Diffusion Models). See Xuan Tung's talk at this year's MODE workshop (<u>https://indico.cern.ch/event/</u> 1481852/contributions/6464894/

- To reconstruct the 3D shower shape from a marginal distribution we set up a minimal chi2 regressor
- Enforce cylindrical symmetry by introducing a numerical Jacobian modulating inferred 3D deposits
- X- and Z-marginals match the original distribution

- Looking at slices of the simulated volume, shower features and symmetries are respected
- Cylindrical symmetry is correctly restored

Modules **Voxels and Event overlay**

- Voxel structure is encoded through Voronoi regions identified by the voxel centers.
 - Boundaries defined as median planes between centers
- Objective is using centers as free parameters and thus optimize voxel location and extension
- In a (800x800x200)mm3 volume

Modules Voxels and Event overlay

- 3D generated shower is randomized and assigned to Voronoi voxel
 - Rotated: $\phi \sim [0,30] \deg \theta \sim [0,360] \deg \theta$
 - Entrance point randomly selected in a 20cm cube of base plane
- BIB density evaluated at voxel center, and scaled by voxel volume

Energy Density (Event 1)

Modules Reconstruction

- Employed DeepJetCore for object reconstruction:
 - Signal photon vs BIB discrimination
 - Trained on 10k photons uniformly distributed in [10, 175]GeV
 - Tested on 8 fixed energy points
- Both signal and BIB overlayed from Geant4 simulations lacksquare
 - Similar performance wrt collaboration framework on full BIB dataset
 - Significant improvement if we apply the same time window cut [-250,250]ps

Modules Reconstruction

- With our framework clustering is trivial (only one cluster by definition)
- Kept the same architecture, adapted to simply regress a signal fraction associated to each cell deposit
- Trained on 10k events, generated with the developed surrogates on randomized centroid configuration (gaussian sampling centered at regular grid points, std the original cell dimension)
- Very good reconstruction performance, stable throughout different configurations

Testing the Pipeline First run setup

- Defined a basic utility function as end of |E| reconstruction resolution $\mathscr{L} := -$
- Used initial configuration that mocks the original calorimeter design (4x4x5)cm cells in a 40x40x20cm3 volume (Limited by GPU memory)
- Launched an optimization cycle over 300 epochs with linearly decaying learning rate (1.->0.1)

$$\sum_{pred}^{nergy} - E_{true}$$

Testing the pipeline First run Results

- Good news: pipeline works, gradients flow through and loss diminishes
- Still extremely noisy: Reconstruction solid enough to properly reconstruct photons, although we have already a small gain
- Can draw first considerations on how voxels diffuse

Testing the pipeline First run Results

- Looking at volume maps, voxels on the bottom block tend to diffuse upwards
- Left with less, broader cells in the lower region
- There most information is lost due to BIB. Lower cells can play also as absorbers, increasing granularity on the layers above to collect information where signal is clearer.

Note: not same scale, max of top plot is normalized to 1

Wrap up **Summary and conclusions**

- Presented a proof-of-concept for a SGD-based optimization pipeline. Results are still preliminary, but provide a starting point for more realistic studies
- Surrogate models provide fast, differentiable tools for event simulation Solid reconstruction performance, allows for more complicated utility definition. Explore multi-target functions, discussing with collaboration and encoding geometrical limitations and preferences. Implementation of **position** reconstruction as well.

Thank you!

Backup

2D image to 3D shower **Chi2 regressor**

Algorithm 2 Reconstruction of 3D Energy Distribution from a Marginal using Cylindrical Symmetry

Input: Target marginal image $f_Y(x,z) \in \mathbb{R}^{n \times m}$ **Output:** Predicted 3D distribution $E(x,y,z) \in \mathbb{R}^{n \times m \times p}$

- 1: **procedure** InflateShower(f_Y)
- Precompute cylindrical ring fractions *f* via uniform sampling 2:
- Initialize density tensor ρ as trainable variable 3:
- for t = 1 to T (training steps) do 4:
- Compute predicted marginal: 5:
- Compute loss: $L = \sum_{ij} (\hat{f}_{Y_{ij}}$ 6:
- Update ρ using Adam optimizer a 7:
- Enforce physicality: $\rho \leftarrow \max\{\rho, 0\}$ 8:
- end for 9:
- Reconstruct full 3D energy volume: *E* 10:
- return E 11:
- 12: end procedure

$$\hat{f}_{Y_{i,j}} = \sum_k \sum_m \sum_l f_{ijkl} \rho_{lm}$$

- I_{ij})².
nd gradients from L
}

$$E_{ijk} = \sum_m \sum_l f_{ijkl} \rho_{lm}$$

Voxel volume estimation Monte-Carlo sampling for Voronoi volumes

- Voxel volumes are estimated through Monte Carlo sampling
- Draw 200k points over detection volume
- Assign each to the closest voxel center
- At initial configuration 3 type of voxels, depending on whether they occupy a central, edge or corner position

Muon Collider details **Muon production beamline**

Figure 3.2: Schematic layout of the Muon Collider system. From [96]

Muon Collider details Envisioned timeline

Figure 3.1: Proposed R&D and construction milestones needed to enable a first 3 TeV stage by 2050, assuming a successful demonstration of cooling, magnets, and detectors

Muon Collider details Target parameters Parameter

- Scenario 1: Energy staging. First run at 3TeV, there are physics case studies, lower instrumentation cost at beginning.
- Scenario 2: luminosity staging. Less performing magnets, but already at full energy. Full cost required at beginning. Estimated factor 3 loss in luminosity

Center-of-mass er Target integrated lur Estimated lumino Collider circumfer Collider arc peak Luminosity lifeti

Muons/bunch Repetition rate Beam power RMS longitudinal en RMS transverse em

> IP bunch lengt IP beta function IP beam stile

Protons on target/ Proton energy in t

Table 3.1: Tentative target parameters for a Muon Collider at different energies.

	Symbol	Unit	Scenario 1		Scenario 2	
			Stage 1	Stage 2	Stage 1	Stage 2
nergy	E_{cm}	TeV	3	10	10	10
minosity	$\int \mathcal{L}_{target}$	ab^{-1}	1	10	10	10
osity	$\mathcal{L}_{estimated}$	$10^{34} \text{cm}^{-2} \text{s}^{-1}$	2.1	21	5(tbc)	14
rence	C_{coll}	km	4.5	10	15	15
field	B_{arc}	T	11	16	11	11
ime	N_{turn}	turns	1039	1558	1040	1040
h	N	10^{12}	2.2	1.8	1.8	1.8
e	f_r	Hz	5	5	5	5
r	P_{coll}	MW	5.3	14.4	14.4	14.4
nittance	ϵ_{\parallel}	eV	0.025	0.025	0.025	0.025
nittance	$\epsilon_{\perp}^{"}$	μ m	25	25	25	25
th	σ_z	mm	5	1.5	tbc	1.5
on	eta	mm	5	1.5	tbc	1.5
e	σ	μ m	3	0.9	tbc	0.9
bunch	N_p	1014	5	5	5	5
target	$\dot{E_p}$	GeV	5	5	5	5

