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Introduction 
Why a Muon Collider?
• Luminosity increases with center-mass energy


◦ Competitive with LINACs


◦ Most ‘physics-per-dollar’ potential


• Heavier than electrons: less radiative losses -> Higher 
center mass energies


• Lepton Collider: no pile-up effects


• Rather old concept, regained interest within the post-LHC 
debate (Snowmass, European Strategy): possibility to have 
a lepton collider working at TeV scale


• Higgs Factory


◦ σ(𝜇+𝜇-→H) ≃ 40000 σ (e+e-→H)


• Possibility for BSM measurements
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Introduction 
Why a Muon Collider?

• Beamline plans for 
CERN(left) and 
Fermilab(right).


• O(10km) rings for TeV-
scale collision 
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What
Summary of the problem
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• Finite lifetime of the muon (2.2μs) 
implies a cloud of high-energy decay 
product along the beamline, which 
interferes with the instrumentation 
(Beam-Induced Background - BIB)


• During preliminary Machine-Detector 
Interface design, a double-cone 
nozzle has been included to shield 
the detector from BIB radiation 

Visualizations from FLUKA BIB simulation. Black: 
neutrons, other: photons



What 
Pipeline scheme

5

• End objective: design 
optimization study 
approached with AD 
techniques


• Development of a 
pipeline to propose an 
optimal configuration in 
terms of signal-to-
background 
discrimination and 
instrumentation cost


• Use single 
monochromatic 
photons as benchmark



What
CRILIN: Reference design

• Reference design chosen for our studies is 
CRILIN for the Electromagnetic Calorimeter 
(ECal)


• Array of 1x1x4.5cm3 PbF2 voxels, arranged in 
a dodecagonal prism


• 5 layers per wedge


• Modular design, easy to modify and 
rearrange
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Modules
BIB Generation

• Starting from a 750GeV FLUKA beam 
simulation, fed to a Geant4 detector 
model. 


• Muon decays within 5m from interaction 
point


• Symmetrized to simulate contributions 
from both sides


• Cylindrical symmetry allows to limit the 
problem to a single wedge
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Modules
BIB Generation
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• Model the BIB flux across the 5 
layers by training a Gaussian Process 


• Predicts BIB energy density given a 
(z,y) coordinate pair - uniform along 
the x direction


• Main motivation for a GP is ability to 
interpolate between layers



Modules
BIB Generation 
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• Simulation is heavy (O(TB) for 
single event), and does not 
provide information on intra-
layer BIB depositions


• Validation: total deposit on the 
detection area matches 
simulation


• Shapes and magnitudes are 
reasonable, allows us to work



Modules
Shower Generation 
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• For signal events we chose 
single monochromatic photons, 
energy uniformly distributed in 
[10,175]GeV.


• Use Geant4 to produce a 
dataset of 10k photons entering 
orthogonally in a PbF2 block.


• Saved as 2D images



Modules
Shower Generation
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• Use the dataset to train a simple GravNet-based GNN 
to generate photon showers given an input energy.


• Not extremely precise, but


• Fast


• Describes well enough shower bulk 


• Total deposit matches the target


• To be patched with conditional DDPM (Denoising 
Diffusion Models). See Xuan Tung’s talk at this year’s 
MODE workshop ( https://indico.cern.ch/event/
1481852/contributions/6464894/ )
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Modules
Shower Generation
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• To reconstruct the 3D shower shape from a 
marginal distribution we set up a minimal 
chi2 regressor


• Enforce cylindrical symmetry by 
introducing a numerical Jacobian 
modulating inferred 3D deposits


• X- and Z-marginals match the original 
distribution



Modules
Shower Generation
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• Looking at slices of the simulated volume, shower features and symmetries are 
respected


• Cylindrical symmetry is correctly restored



Modules
Voxels and Event overlay
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• Voxel structure is encoded through Voronoi 
regions identified by the voxel centers. 


• Boundaries defined as median planes 
between centers


• Objective is using centers as free parameters 
and thus optimize voxel location and 
extension 


• In a (800x800x200)mm3 volume



Modules
Voxels and Event overlay
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• 3D generated shower is randomized 
and assigned to Voronoi voxel


• Rotated: φ∼[0,30]deg θ∼[0,360]deg


• Entrance point randomly selected 
in a 20cm cube of base plane


• BIB density evaluated at voxel 
center, and scaled by voxel volume



Modules
Reconstruction

• Employed DeepJetCore for object reconstruction:


• Signal photon vs BIB discrimination


• Trained on 10k photons uniformly distributed in [10, 
175]GeV


• Tested on 8 fixed energy points


• Both signal and BIB overlayed from Geant4 simulations


• Similar performance wrt collaboration framework on 
full BIB dataset


• Significant improvement if we apply the same  time 
window cut [-250,250]ps
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https://arxiv.org/abs/2204.01681



Modules
Reconstruction
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• With our framework clustering is trivial (only one 
cluster by definition)


• Kept the same architecture, adapted to simply 
regress a signal fraction associated to each cell 
deposit


• Trained on 10k events, generated with the 
developed surrogates on randomized centroid 
configuration (gaussian sampling centered at 
regular grid points, std the original cell dimension) 


• Very good reconstruction performance, stable 
throughout different configurations



Testing the Pipeline
First run setup

• Defined a basic utility function as energy 

reconstruction resolution 


• Used initial configuration that mocks the original 
calorimeter design (4x4x5)cm cells in a 
40x40x20cm3 volume (Limited by GPU memory)


• Launched an optimization cycle over 300 epochs 
with linearly decaying learning rate (1.->0.1) 

ℒ :=
|Epred − Etrue |

Etrue
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Testing the pipeline
First run Results

• Good news: pipeline works, 
gradients flow through and loss 
diminishes


• Still extremely noisy: Reconstruction 
solid enough to properly reconstruct 
photons, although we have already a 
small gain


• Can draw first considerations on 
how voxels diffuse
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Testing the pipeline
First run Results

• Looking at volume maps, voxels on 
the bottom block tend to diffuse 
upwards


• Left with less, broader cells in the 
lower region


• There most information is lost due to 
BIB. Lower cells can play also as 
absorbers, increasing granularity on 
the layers above to collect 
information where signal is clearer. 
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Note: not same scale, max of top plot is normalized to 1



Wrap up
Summary and conclusions

• Presented a proof-of-concept for a SGD-based optimization pipeline. 
Results are still preliminary, but provide a starting point for more realistic 
studies


• Surrogate models provide fast, differentiable tools for event simulation

• Solid reconstruction performance, allows for more complicated utility 

definition. Explore multi-target functions, discussing with collaboration 
and encoding geometrical limitations and preferences. Implementation 
of position reconstruction as well.
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Thank you!



Backup

22



2D image to 3D shower 
Chi2 regressor
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Voxel volume estimation 
Monte-Carlo sampling for Voronoi volumes

• Voxel volumes are estimated through 
Monte Carlo sampling


• Draw 200k points over detection 
volume


• Assign each to the closest voxel 
center


• At initial configuration 3 type of 
voxels, depending on whether they 
occupy a central, edge or corner 
position
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Muon Collider details
Muon production beamline
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Muon Collider details
Envisioned timeline
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Muon Collider details
Target parameters
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• Scenario 1: Energy 
staging. First run at 3TeV, 
there are physics case 
studies, lower 
instrumentation cost at 
beginning.


• Scenario 2: luminosity 
staging. Less performing 
magnets, but already at 
full energy. Full cost 
required at beginning. 
Estimated factor 3 loss in 
luminosity


