lsbi: linear simulation based inference [2501.03921]

Will Handley

<wh260@cam.ac.uk>

Royal Society University Research Fellow Institute of Astronomy, University of Cambridge Kavli Institute for Cosmology, Cambridge Gonville & Caius College willhandley.co.uk/talks

19th July 2025

"If asked what is the most under-used Machine Learning technique in physics...
... my answer is only half-jokingly linear regression."

Jesse Thaler [phystat 2024]

Who?

Idea I've been working on/talking about on-and-off for the better part of 2 years,

- Nicolas Mediato Diaz (MSci project)
- David Yallup (Postdoc)
- Thomas Gessey Jones (Postdoc)
- Toby Lovick (PhD student)

Many others have also presented this idea independently

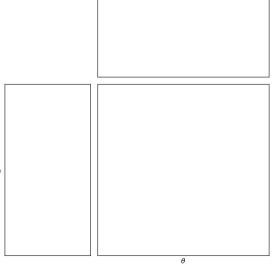
- ► SELFI incorporates much of this idea: Leclercq [1902.10149]
- ▶ some of these ideas are in MOPED: Heavens [astro-ph/9911102]
- ► Also appears in Häggström [2403.07454]

David Yallup

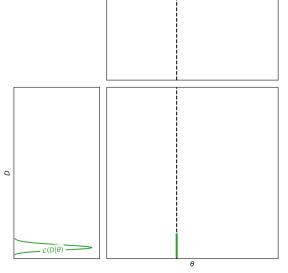
Thomas Gessey-Jones

Toby Lovick

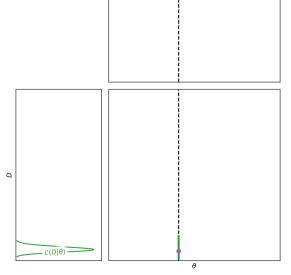
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



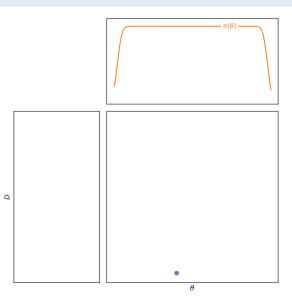
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ▶ Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



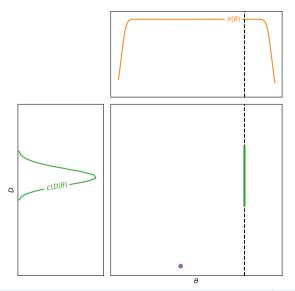
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ▶ Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



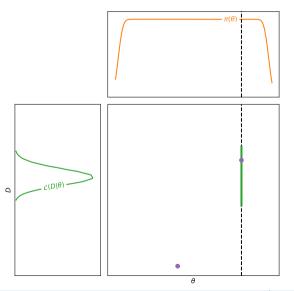
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- ▶ Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



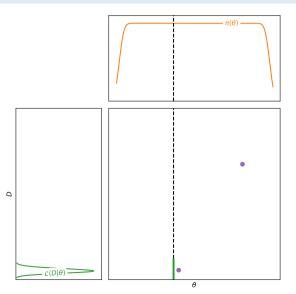
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



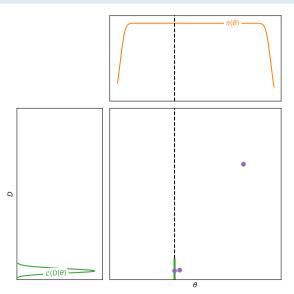
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



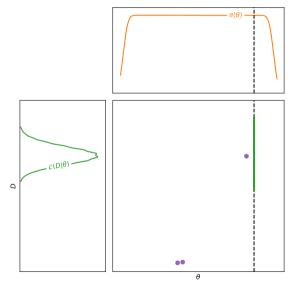
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



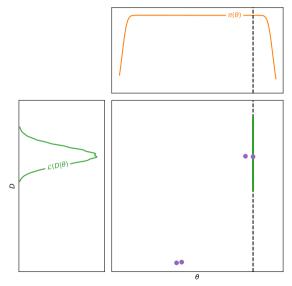
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- ▶ Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ▶ Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



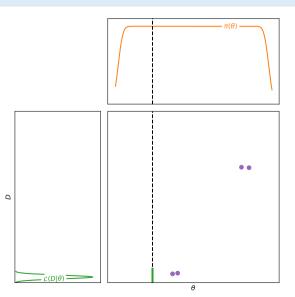
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- ▶ Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta, D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



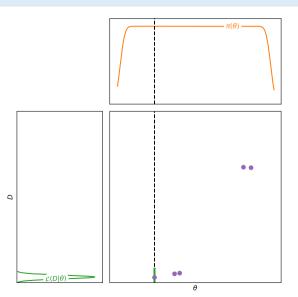
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta, D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



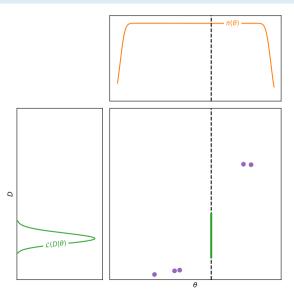
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- ▶ Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



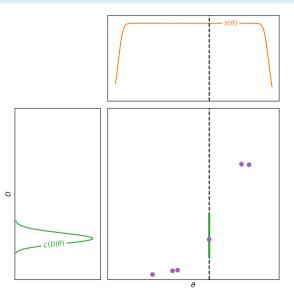
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ▶ Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



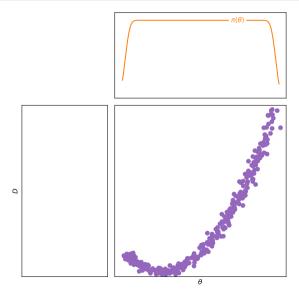
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



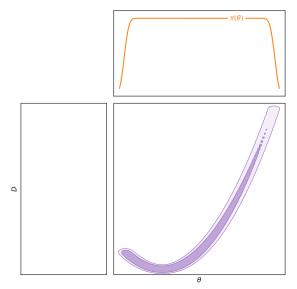
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



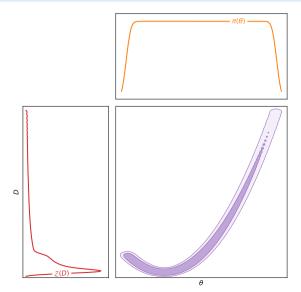
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- ▶ Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



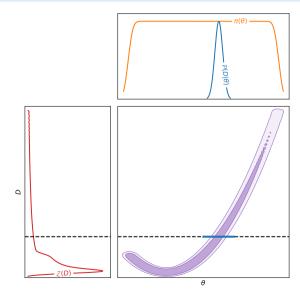
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



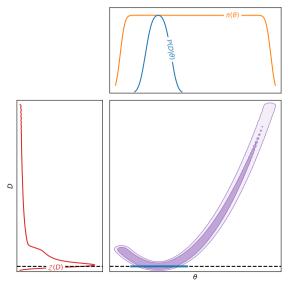
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



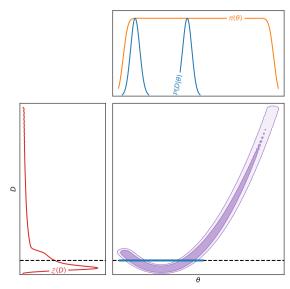
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



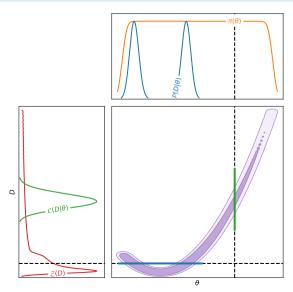
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- ▶ Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$, and evidence $\mathcal{Z}(D)$ or even likelihood $\mathcal{L}(D|\theta)$ or joint $\mathcal{J}(\theta,D)$.
- Present state of the art achieves this using machine learning (neural networks).



Why linear SBI?

If neural networks are all that, why should we consider the regressive step of going back to linear versions of this problem?

- It is pedagogically helpful
 - separates general principles of SBI from the details of neural networks
 - ▶ (particularly for ML skeptics)
- It is practically useful
 - for producing expressive examples with known ground truths.
- It is pragmatically useful
 - competitive with neural approaches in terms of accuracy,
 - faster and more interpretable.

Linear Simulation Based Inference

Mathematical setup

▶ Linear generative model (m, M, C)

$$D = m + M\theta \pm \sqrt{C}$$

where:

 θ : *n* dimensional parameters

D: d dimensional data

 $M: d \times n$ transfer matrix

m: d-dimensional shift

 $C: d \times d$ data covariance

¹N.B. using matrix variate notation where primes denote transposes $M' = M^T$

Linear Simulation Based Inference

Mathematical setup

• Linear generative model (m, M, C)

$$D \sim \mathcal{N}(m + M\theta, C)$$

where:

 θ : *n* dimensional parameters

D: d dimensional data

 $M: d \times n$ transfer matrix

m: d-dimensional shift

 $C: d \times d$ data covariance

¹N.B. using matrix variate notation where primes denote transposes $M' = M^T$

Linear Simulation Based Inference

Mathematical setup

► Linear generative model (*m*, *M*, *C*)

$$D \sim \mathcal{N}(m + M\theta, C)$$

where:

 θ : n dimensional parameters

D: d dimensional data

 $M: d \times n$ transfer matrix

m: *d*-dimensional shift

 $C: d \times d$ data covariance

k Simulations

$$S = \{(\theta_i, D_i) : i = 1, \ldots, k\}$$

Define simulation statistics¹:

$$\begin{array}{ll} \bar{\theta} &= \frac{1}{k} \sum_{k} \theta_{i} \\ \bar{D} &= \frac{1}{k} \sum_{k} D_{i} \\ \Theta &= \frac{1}{k} \sum_{i} (\theta_{i} - \bar{\theta})(\theta_{i} - \bar{\theta})' \\ \Delta &= \frac{1}{k} \sum_{i} (D_{i} - \bar{D})(D_{i} - \bar{D})' \\ \Psi &= \frac{1}{k} \sum_{i} (D_{i} - \bar{D})(\theta_{i} - \bar{\theta})' \end{array}$$

¹N.B. using matrix variate notation where primes denote transposes $M' = M^T$

- We now wish to infer the parameters of the linear model (m, M, C) from simulations S (which define $\bar{\theta}, \bar{D}, \Theta, \Delta, \Psi$)
- ▶ The likelihood for this problem is:

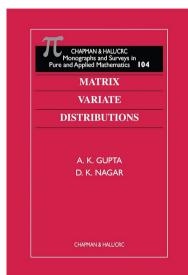
$$\mathcal{L}(M, m, c) = P(\{D_i\}|\{\theta_i\}|m, M, C)$$
$$= \prod_i \mathcal{N}(D_i|m + M\theta_i, C)$$

- We now wish to infer the parameters of the linear model (m, M, C) from simulations S (which define $\bar{\theta}, \bar{D}, \Theta, \Delta, \Psi$)
- ▶ The likelihood for this problem is:

$$\mathcal{L}(M, m, c) = P(\{D_i\}|\{\theta_i\}|m, M, C)$$
$$= \prod_i \mathcal{N}(D_i|m + M\theta_i, C)$$

It can be shown the prior π and posterior $\mathcal P$ are conjugately. . .

$$\begin{split} & m|M,C,\sim \mathcal{N}(D_p-M\theta_p,\frac{1}{\lambda_p}C),\\ & M|C,\sim \mathcal{M}\mathcal{N}(M_p,C,\Omega_p^{-1}),\\ & C\sim \mathcal{W}_{\nu_p}^{-1}(\Psi_p) \end{split}$$



- We now wish to infer the parameters of the linear model (m, M, C) from simulations S (which define $\bar{\theta}, \bar{D}, \Theta, \Delta, \Psi$)
- ▶ The likelihood for this problem is:

$$\mathcal{L}(M, m, c) = P(\{D_i\}|\{\theta_i\}|m, M, C)$$
$$= \prod_i \mathcal{N}(D_i|m + M\theta_i, C)$$

It can be shown the prior π and posterior \mathcal{P} are conjugately. . .

$$m|M, C, \sim \mathcal{N}(D_p - M\theta_p, \frac{1}{\lambda_p}C),$$

 $M|C, \sim \mathcal{M}\mathcal{N}(M_p, C, \Omega_p^{-1}),$
 $C \sim \mathcal{W}_{\nu_p}^{-1}(\Psi_p)$

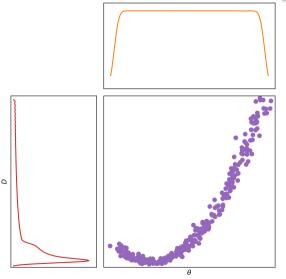
$$\begin{split} \nu_{\mathcal{P}} &= \nu_{\pi} + k, \qquad \lambda_{\mathcal{P}} = \lambda_{\pi} + k \\ \theta_{\mathcal{P}} &= \frac{\lambda_{\pi}\theta_{\pi} + k\bar{\theta}}{\lambda_{\pi} + k} \qquad D_{\mathcal{P}} = \frac{\lambda_{\pi}D_{\pi} + k\bar{D}}{\lambda_{\pi} + k} \\ \Omega_{\mathcal{P}} &= \Omega_{\pi} + k\Theta + \frac{k\lambda_{\pi}}{k + \lambda_{\pi}}(\theta_{\pi} - \bar{\theta})(\theta_{\pi} - \bar{\theta})' \\ M_{\mathcal{P}}\Omega_{\mathcal{P}} &= M_{\pi}\Omega_{\pi} + k\Phi \\ &\quad + \frac{k\lambda_{\pi}}{k + \lambda_{\pi}}(D_{\pi} - \bar{D})(\theta_{\pi} - \bar{\theta})', \\ \Psi_{\mathcal{P}} &= \Psi_{\pi} + k\Delta - k\Phi\Theta^{-1}\Phi' \\ &\quad + \frac{k\lambda_{\pi}}{k + \lambda_{\pi}}(M_{\mathcal{P}}(\theta_{\pi} - \bar{\theta}) - (D_{\pi} - \bar{D}))' \\ &\quad + k(M_{\mathcal{P}}(\theta_{\pi} - \bar{\theta}) - (D_{\pi} - \bar{D}))' \\ &\quad + k(M_{\mathcal{P}} - \Phi\Theta^{-1})\Theta(M_{\mathcal{P}} - \Phi\Theta^{-1})' \\ &\quad + (M_{\mathcal{P}} - M_{\pi})\Omega_{\pi}(M_{\mathcal{P}} - M_{\pi})' \end{split}$$

Sequential LSBI

- As we shall see, for non-linear problems, a linear approximation is unlikely to be a good one.
- \triangleright Sequential methods iteratively improve by focussing effort around observed data $D_{\rm obs}$.
 - ► This is orthogonal to amortised approaches
 - More appropriate to cosmology, where there is only one dataset
 - Less appropriate to particle physics/GW
- We are free to choose where to place simulation parameters $\{\theta_i\}$, so it makes sense to choose these so that they generate simulations close to the observed data
- Our current approximation to the posterior is a natural choice.

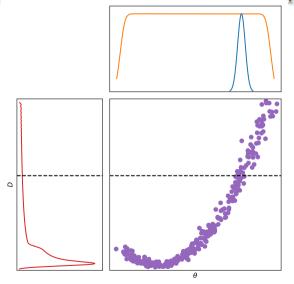
PhD student

Same model as before



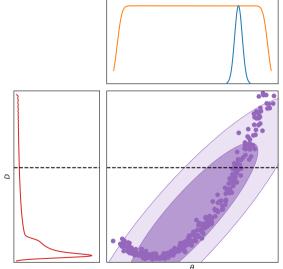
PhD student

- Same model as before
- ▶ Mark the observed data D_{obs}



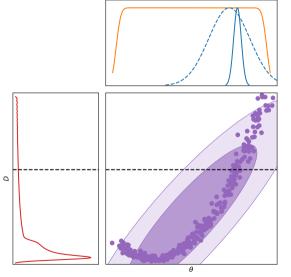
- PhD student
 - Toby Lovick

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using 1sbi



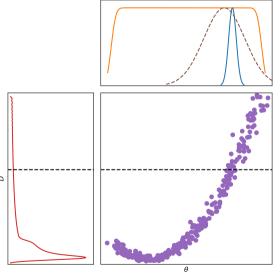
- PhD student
 - Toby Lovick

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using 1sbi
- Evaluate the posterior (cheap as linear)



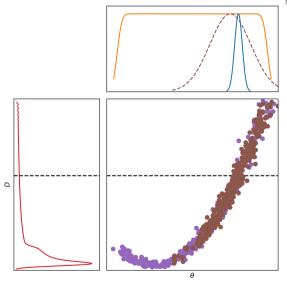
- PhD student
 - Toby Lovick

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator



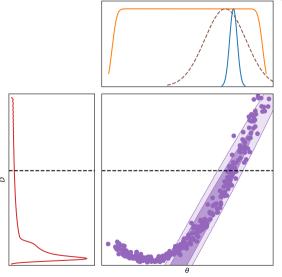
PhD student

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these



- PhD student
 - aby Lovick

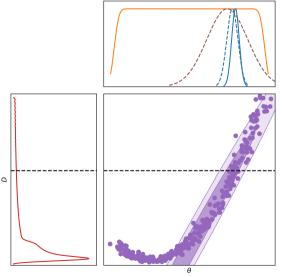
- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these
- Evaluate the new posterior



PhD student

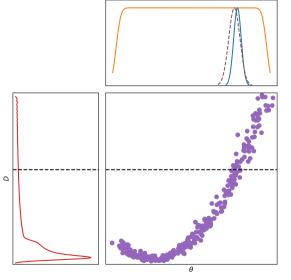
Toby Lovick

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these
- Evaluate the new posterior
- Iterate



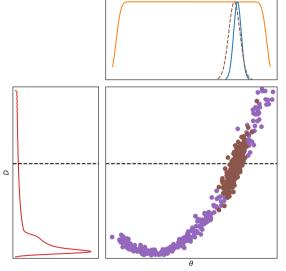
- PhD student
 - oby Lovick

- ► Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these
- Evaluate the new posterior
- Iterate



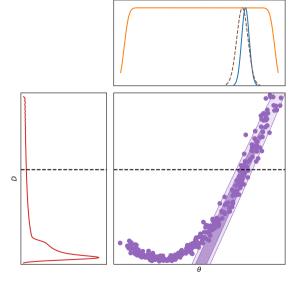
- PhD student
 - oby Lovick 1000

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these
- Evaluate the new posterior
- Iterate



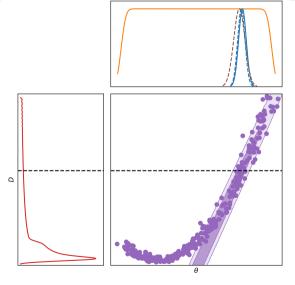
- PhD student
 - ovick Ovick

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these
- Evaluate the new posterior
- Iterate



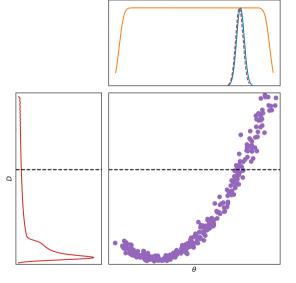
- PhD student
 - Toby Lovick

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these
- Evaluate the new posterior
- Iterate



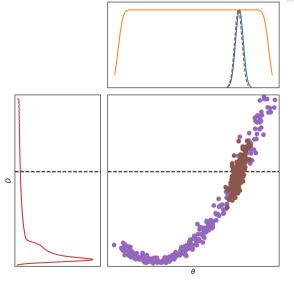
- PhD student
 - Toby Lovick

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these
- Evaluate the new posterior
- Iterate



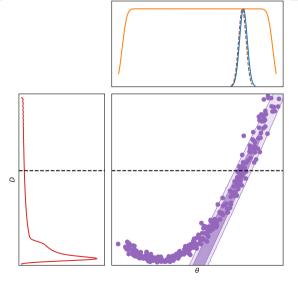
- PhD student
 - Toby Lovick

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these
- Evaluate the new posterior
- Iterate



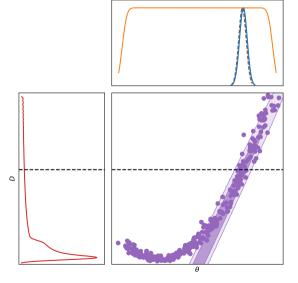
- PhD student
 - Toby Lovick

- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these
- Evaluate the new posterior
- Iterate

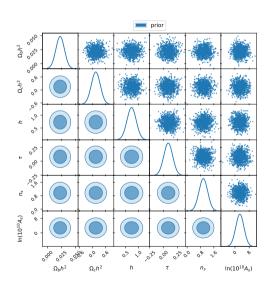


- PhD student
 - Toby Lovick

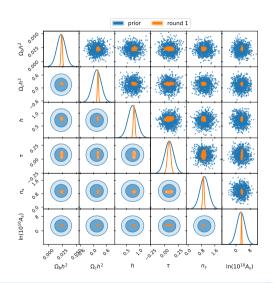
- Same model as before
- ▶ Mark the observed data Dobs
- ▶ Fit a model using lsbi
- Evaluate the posterior (cheap as linear)
- Now use this posterior to pick $\{\theta_i\}$
- Generate $\{D_i\}$ from original simulator
- ▶ Fit lsbi to these
- Evaluate the new posterior
- Iterate



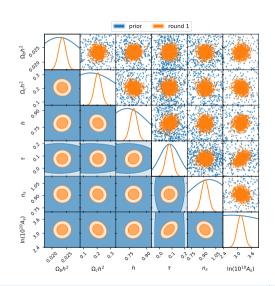
- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



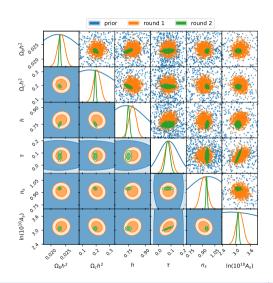
- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



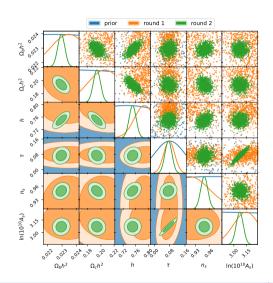
- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



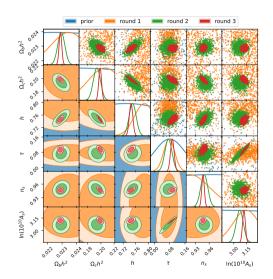
- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



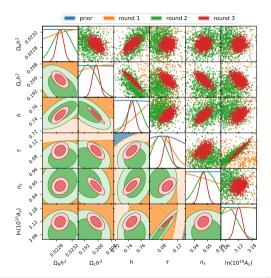
- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



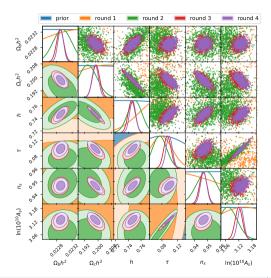
- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



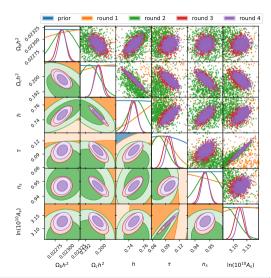
- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



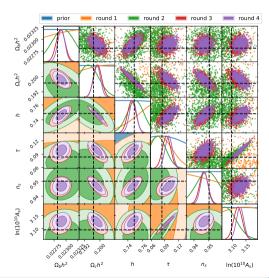
- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



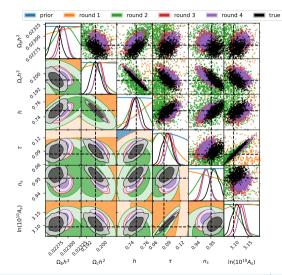
- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



- Now apply this to a "real" cosmology example, inferring ΛCDM from the CMB
- Unfortunately generative planck likelihoods do not exist yet
- Consider a cosmic-variance limited, temperature-only, full sky CMB experiment with no foregrounds
- ▶ This is a n = 6, d = 2500 non-linear problem
 - No compression needed
- Apply the above procedure
- ▶ Slight bias these results, but this can be fixed by marginalising over *m*, *M*, *C*, rather than taking point estimates.



1sbi: linear simulation based inference

Code details

- lsbi is a pip-installable python package
- ▶ it extends scipy.stats.multivariate_normal
 - vectorised distributions with (broadcastable) arrays of mean and cov
 - .marginalise(...) and .condition(...) methods
 - Plotting functionality
- Implements LinearModel class with .prior(), .likelihood(theta), .posterior(D) &
 .evidence() methods which return distributions
- ▶ Also implement MixtureModel
- Under active development
 - Open source
 - Continuous integration
- ▶ github.com/handley-lab/lsbi

Where next?

Algorithms

- Explore mixture modelling for real nonlinear effects
 - "multinest for sbi"
- How does LSBI contribute to the question of compression
- Explore limits of d and n

Code

Jax

Astrophysics

- Include realistic CMB simulation effects (foregrounds)
- Extend to more examples (BAO, SNe, weak & strong lensing)

Theory

- If the posterior is the answer, what is the question?
- Importance sampling?
- Model comparison?

Al and science

What I've really been doing for the past 8 months

- Many talks this conference focus on using AI in the direct analysis of scientific data, or the construction of scientific models.
- ▶ There is another, far more important arena where AI is about to totally transform science.
- ▶ This is in how we do the business of science:
 - Drafting papers/grants
 - Deriving equations/long calculations
 - Writing large codebases
 - Multi-modal synthesis (meetings, papers, code, conferences, talks)
- ▶ The latest agentic systems allow you to write code and papers that would take you months in a week.
- If you are not using the latest large language models (o3, claude 4.0, gemini 2.5) and agentic systems (claude code, cursor, roocode, codex, deep research) you are months behind
- e.g. as a group we are porting legacy systems onto GPU at a pace I would have considered unimaginable *last month*.

Conclusions

github.com/handley-lab/group

- ▶ Introduction to lsbi: A linear simulation-based inference method developed over 18 months by the speaker and collaborators.
- ▶ Benefits of Linear SBI: Pedagogical value, practical examples with known ground truths, competitive accuracy, speed, and interpretability compared to neural networks.
- ▶ **Mathematical Setup:** Uses a linear generative model to fit simulation data and iteratively refine posterior estimations, demonstrated through toy and cosmology examples.
- ▶ lsbi Python Package: Extends scipy.stats.multivariate_normal with functionalities for marginalization, conditioning, and plotting; under active development and open source.
- Future Directions: Include realistic CMB simulations, extend to other examples (BAO, SNe), explore parameter limits, mixture modeling, and integrate importance sampling and model comparison.