On the accuracy of posterior recovery with neural network emulators

EuCAIF Conference 2025 - htjb2@cam.ac.uk

Harry Bevins With Thomas Gessey-Jones and Will Handley

Emulators in Cosmology and Astrophysics

- Neural network emulators are really important in Cosmology and Astrophysics
- For fast inference on computationally expensive likelihoods
- Generating large training data sets for training simulation based inference algorithms

Cosmopower [Spurio Mancini+2021]

globalemu [Bevins+21] 21cmLSTM [Dorigo Jones+2024] 21cmEMU [Breitman+ 2023] 21cmGEM [Cohen+2017] And 21cmVAE [Bye+2022]

Speculator [Alsing+2020]

Emulators in Cosmology and Astrophysics

- In this work we are focused on likelihood based inference
- Semi-numerical simulations of cosmological signals are very computationally expensive
- Train emulators on example simulations and use these the likelihood functions
- Established method for doing inference

(a) Cosmic shear with 37 (Λ CDM) and 39 ($w_0 w_a$ CDM) parameters, described in Sect. 4.

Method	$\log(z_{\Lambda { m CDM}})$	$\log(z_{w_0w_a{ m CDM}})$	$\log \mathrm{BF}$	Total computation time
CAMB + nested sampling	-107.03 ± 0.27	-107.81 ± 0.74	0.78 ± 0.79	~ 8 months (48 CPUs)
CosmoPower-JAX + NUTS + harmonic	40956.55 ± 0.06	40955.03 ± 0.04	1.53 ± 0.07	2 days (sampling, 12 GPUs) + 12 minutes (evidence, 1 GPU + 48 CPUs)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	400958 ± 5	40957 ± 4	1 ± 6	Similar to harmonic

Piras et al 2024

(b) 3x(3x2pt) with 157 (ACDM) and 159 (w_0w_a CDM) parameters, described in Sect. 5.

Method	$\log(z_{\Lambda { m CDM}})$	$\log(z_{w_0w_a{ m CDM}})$	$\log \mathrm{BF}$	Total computation time
CAMB + nested sampling	Unfeasible	Unfeasible	Unfeasible	12 years (projected, 48 CPUs)
CosmoPower-JAX + NUTS + harmonic	$406689.6\substack{+0.5\\-0.3}$	$406687.7\substack{+0.5\\-0.3}$	$1.9\substack{+0.7 \\ -0.5}$	$8 ext{ days (sampling, 24 GPUs)} + 17 ext{ minutes (evidence, 1 GPU + 48 CPUs)}$
$\texttt{CosmoPower-JAX} + \texttt{NUTS} + \begin{array}{c} \texttt{na\"ive flow} \\ \texttt{estimator} \end{array}$	406703 ± 39	406701 ± 62	2 ± 73	Similar to harmonic

Defining required accuracy

- We measure accuracy by evaluating the networks on a test data set
- Typically we do this with something like RMSE

$$\epsilon = \sqrt{\frac{1}{N_{\nu}} \sum_{i}^{N_{t}} (S_{\text{true}}(t) - S_{\text{pred}}(t))^{2}}$$

- But what average value of ϵ over the test data is good enough?
- Generally we work with "rules of thumb"
- e.g. *globalemu* paper suggested $\bar{\epsilon} \approx 0.1\sigma$

Impact on posterior recovery?

 Really interested in is how well can we recover the posteriors if we use an emulator rather than the full simulation?

$$\log L \to \log L + \delta \log L$$
$$P(\theta \mid D, M) = \frac{L\pi}{\int L\pi d\theta} \to P_E(\theta \mid D, M_E) = \frac{L\pi e^{\delta \log L}}{\int L\pi e^{\delta \log L} d\theta}$$

• Is $\bar{\epsilon} \approx 0.1\sigma$ good enough?

21cm Cosmology

- Relative brightness of 21cm signal from neutral hydrogen and the background CMB
- 21cm signal brightness measured by a statistical temperature
- Relative number of atoms with aligned and anti-aligned proton and electron spins driven by many different processes
 - **Cosmology (**z < 30**)**
 - Star formation (30 < z < 15)
 - X-ray heating (15 < z < 8)
 - Ionisation (8 < z < 5)
 - With some overlap
 - And many other processes

Dorigo Jones+23

- Dorigo Jones+23 tried to answer questions of emulator accuracy
- Ran inference with ARES and compared recovered posteriors to posteriors recovered with an emulator of ARES
- ARES is a 1D radiative transfer code which evaluates in about 1s
- Typically want to use semi-numerical or hydro simulations which take hours to days to run per parameters set

OPEN ACCESS

Validating Posteriors Obtained by an Emulator When Jointly Fitting Mock Data of the Global 21 cm Signal and High-*z* Galaxy UV Luminosity Function

J. Dorigo Jones¹ (D, D. Rapetti^{1,2,3} (D, J. Mirocha^{4,5} (D, J. J. Hibbard¹ (D, J. O. Burns¹ (D, and N. Bassett¹ 🕩

Published 2023 December 5 • © 2023. The Author(s). Published by the American Astronomical Society. The Astrophysical Journal, Volume 959, Number 1

Citation J. Dorigo Jones et al 2023 ApJ 959 49

DOI 10.3847/1538-4357/ad003e

Dorigo Jones+23

Measured posterior accuracy with two metrics

emulator bias =
$$\frac{|\mu_{\text{globalemu}} - \mu_{\text{ARES}}|}{\sigma_{\text{ARES}}}$$
$$\text{true bias} = \frac{|\mu_{\text{ARES}} - \theta_0|}{\sigma_{\text{ARES}}}$$

• They concluded that even for $\bar{\epsilon} \approx 0.05\sigma$ they can't accurately recover the posteriors with an emulator

Why this is concerning?

- We need to go down to around 25 mK noise to confidently detect the 21cm signal
- Most emulators have $\bar{\epsilon} \approx 1 \text{ mK} \approx 0.05 \times 25 \text{mK}$ and it seems challenging to go beyond this
- If we assume a Gaussian likelihood and

$$\sigma^2 = \sigma_{\text{instrument}}^2 + \bar{\epsilon}^2$$

we would expect the uncertainty from the instrument to dominate the posteriors

- The emulator bias defined in Dorigo Jones+23 is fine but its only really considers the difference in 1D
- More comprehensive measure of the difference between the true and emulated posteriors is the Kullback-Leibler Divergence

$$D_{\rm KL} = \int P \log\left(\frac{P}{P_{\epsilon}}\right) d\theta$$

• Typically do not have access to P else we wouldn't be interested in emulators

arXiv:2503.13263

- Can make progress if we make some assumptions
- Firstly we assume that the likelihood function is Gaussian

$$L \propto \exp\left(-\frac{1}{2}(D - \mathcal{M})^T \Sigma^{-1}(D - \mathcal{M})\right)$$

And our prior is uniform such that the posterior is also Gaussian

11

 Assume a linear model and linear emulator error

 $\mathcal{M}(\theta) \approx M\theta + m \text{ and } E(\theta) \approx E\theta + \epsilon$

Such that $M_{\epsilon}(\theta) = (M + E)\theta + (m + \epsilon)$

 Comes from Taylor expansion of model around the MAP and the assumption that the posterior is sharply peaked so we can ignore higher order terms

$$M = \mathcal{J}(\theta_0)$$
$$m = M(\theta_0) - \mathcal{J}(\theta_0)\theta_0$$

- So P and P_E are assumed to be Gaussian
- KL divergence between two Gaussians is given by

$$D_{KL} = \frac{1}{2} \left[\log \left(\frac{|C_E|}{|C|} \right) - N_{\theta} + \operatorname{tr}(C_E^{-1}C) + (\mu_E - \mu)^T C^{-1}(R_E^{-1}C) + (\mu_E - \mu)^T C^{-1}(R_$$

• Can show that

$$C = (M^{T} \Sigma^{-1} M)^{-1}$$

$$\mu = C M^{T} \Sigma^{-1} (D - m)$$

$$C_{E} = ((M + E)^{T} \Sigma^{-1} (M + E))^{-1}$$

$$\mu_{E} = C_{E} (M + E)^{T} \Sigma^{-1} (D - m - \epsilon)$$

• Make assumptions about $E \ll M$ and $\Sigma = \frac{1}{\sigma^2} \mathbf{1}_{N_d}$

$$D_{\mathrm{KL}}(P || P_{E}) \leq \frac{1}{2} \frac{1}{\sigma^{2}} || \epsilon ||^{2}$$
$$D_{\mathrm{KL}}(P || P_{\epsilon}) \leq \frac{N_{d}}{2} \left(\frac{\mathrm{RMSE}}{\sigma}\right)^{2}$$

- Function of emulator error RMSE, the noise in the data σ and the number of data points N_d
- Predictive function that can be used both to justify but also predict the required accuracy of an emulator

arXiv:2503.13263

Limitations of the approximation

- The approximation assumes linearity around the peak of the posterior which might not hold in higher dimensions
- Posteriors become curved or multi modal
- Assuming a Gaussian likelihood and posterior
- Assumes uncorrelated noise in the data
- Assumes noise is constant across the data

Testing on a 21 cm Cosmology problem

- Assuming the data comprises of signal plus noise
- Same fiducial signal as in Dorigo Jones+23
- Same prior range and same sampler
- Assuming a Gaussian likelihood as was done in their paper
- Assuming absolute knowledge of the level of noise in the data
- Running for 5, 25, 50 and 250 mK

arXiv:2503.13263

globalemu performance and ARES modelling

Running the analysis - 250 mK

Running the analysis - 50 mK

Running the analysis - 25 mK

Running the analysis - 5 mK

How about the $D_{\rm KI}$?

- Need to be able to evaluate the logprobability for sets of samples on both distributions to get $D_{\rm KL}$
- Use normalising flows implemented with *margarine* [see Bevins et al 2022, 2023, arXiv:2207.11457, arXiv:2205.12841]
- \bullet Compare calculated $D_{\rm KL}$ with predicted upper limits

arXiv:2503.13263

Conclusions

- We are presenting a useful upper bound on the incurred information loss from using emulators in inference
- Broadly applicable beyond 21cm
- We demonstrated that we can accurately recover posteriors even with $\bar{\epsilon} \approx 0.2\sigma$ for 21cm
- arXiv:2503.13263
- <u>https://github.com/htjb/validating_posteriors</u>

EuCAIF Conference 2025 - htjb2@cam.ac.uk

<u>т</u> О

