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Model misspecification

Model Data Does my model fit the data?
x,0 ~ p(x|0)p0) X If not, where and how does it fail?

obs




Outline

Model misspecification diagnostics

Classification from TASI lectures
1. Inference robustness checks on structured reasoning for SBI,

2. Posterior predictive validation Christoph Weniger [to appear!!]
3. Contrastive model diagnostics

Structured test batteries from augmented simulators

NAM, J. Alvey, C. Weniger (PRD, 2025) [arXiv: 2412.15100]
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https://arxiv.org/abs/2412.15100

checks

1. Inference robustness

Is our inference stable under
small, structured changes to
the data or the inference
pipeline?

¢ Masking part of the data
* Changing summary network architecture
e Altering training algorithm, optimizers, seeds etc.
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2. Posterior predictive validation

Does our model. produce P(Xnew | Xobs) = [ PXpew | )P0 | xops) dO

data that look like what we

observed?
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Dupourqué+25 [arXiv:2506.05911] KiDS-SBI 2024 analysis [arXiv:2404.15402]
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3. Contrastive model diagnostics

: : X,ps | H
Which model describe our K = P(ops | ) with (x| H) = [ P10, H)p(6)dO
data better? P (X,ps | Hp)

Residual error: (lOgIOK)Estinmto - (loglﬂK)x\l]ﬂl_\'(iC
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. . ’ (assumed likelihood)
SBI Bayesian model comparison Evidence Network
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— How to extend this contrastive diagnostic reasoning to a structured framework for multiple tests?
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Structured test batteries from augmented simulators

xO ~ p(x| Hy)

NAM, J. Alvey, C. Weniger
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Structured test batteries from augmented simulators

x@ ~ p(x|Hy)

xD ~ p(x|H,)

(e}
—T

1. Define structured alternatives.

NAM, J. Alvey, C. Weniger
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Structured test batteries from augmented simulators

xO ~ p(x| Hy)

p(x| Hy)
; - t(x) =—2log ———
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1. Define structuted alternatives. 2. Define log-likelihood ratio

test statistics for the alternatives.

NAM, J. Alvey, C. Weniger


https://arxiv.org/abs/2412.15100

Structured test batteries from augmented simulators
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2. Define log-likelihood ratio

test statistics for the alternatives.

1. Define structured alternatives.

NAM, J. Alvey, C. Weniger
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Pi(%) = oy [ (X) > 1(xp))]

10-°

3. From test statistics to
p-values.
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Structured test batteries from augmented simulators:
Localized and aggregated tests

Ut

—  HMsim
T HdistB

Anomaly detection

Localized test statistics are more sensitive
towards single isolated distortions, and, in some
limits, lead to matched filter and anomaly
localization “bump-hunt” type of analyses.

NAM, J. Alvey, C. Weniger
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Aggregated test statistics provides
complementary information about the statistical
significance of favoring the alternatives H; over
the baseline model H, and, in some limits, lead
to model validation statistics.
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Structured test batteries from augmented simulators:
Localized and aggregated tests
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Localized test statistics are more sensitive Aggregated test statistics provides
towards single isolated distortions, and, in some complementary information about the statistical
limits, lead to matched filter and anomaly significance of favoring the alternatives H; over
localization “bump-hunt” type of analyses. the baseline model H,,, and, in some limits, lead

to model validation statistics.

NAM, J. Alvey, C. Weniger
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Structured test batteries from augmented simulators:
Global significance

Data Distortions
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NAM, J. Alvey, C. Weniger [arXiv: 2412.15100)]
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Structured test batteries from augmented simulators:
Connection to classical testing frameworks

* Localized test statistics for additive distortions are closely related to matched filters and signal-to-
noise ratio (SNR) statistics. ~
H:X¥=x+e¢-n" with €~ % -b,b)

Assuming a Gaussian likelihood function for the base model, in the large sample limit, and for scenarios where the
maximum-likelihood estimator is not significantly correlated with the distortion, the test statistic for a given distortion is
directly related to the signal-to-noise ratio (SNR) of that distortion in the data

t(x) =~ SNR,-Z(x) + const.
 Aggregated discrepancy scores reduce to y? tests when distortions are orthogonal and noise is Gaussian.

(x) ~ )(2 + const.

tsum

* In this sense, simulator augmentation extends residual analysis and goodness-of-fit testing to the flexible,
implicit-likelihood setting of SBI.

NAM, J. Alvey, C. Weniger [arXiv: 2412.15100] 1
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What is the training strategy to build such structured test statistics
batteries from augmented simulators?

Data Distortions
5F .
[ ] ——
§ ok ] AN
[ ] c
—5F ]
Anomaly detection Model validation
PN AT Z T,y
10-' %WJ\WJWWM\\ 1 ' B .
£107° | V/ 1 £ 107°F . -
a - 1 & - a
107°F _ 1075 F i
- = - A B G
| | |

Global p-value  pgon = 7.57 x 1073

NAM, J. Alvey, C. Weniger
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Structured test batteries from augmented simulators:
Training strategies

BCE: discriminative classifiers can be used to approximate the generalized likelihood ratio statistic.

g0 [f,.,(ﬁ(x)] = Eompieiii) [—m o( ﬁ’[/,(x))] + Eqepeatiiy [—m o(1 - fi’d,(x))] with & 2f )

SNR: minimizing a Gaussian negative log-likelihood loss for the MLE of the matched filter e(x) and its variance 2.

(Gi,¢(x ) —€)?

2
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€i,¢(x)

+ In 6?2 with 1i(x) o

l?

. 1
L3R [Gi,ab(x)’ 0,-,4;] = Excnpel (o) o
I,

When distortions correspond to structured changes in space (e.g,, image domains), the individual networks can be

trained jointly using shared neural architectures: fy(x): 2 — RY%and ey(x) : & - RY, G{% : P — RN

NAM, J. Alvey, C. Weniger [arXiv: 2412.15100)]
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Adaptive learning of distortions amplitude SNRpmax

b = SNRmaXU =
\/ (nO)TE-1p®)

The algorithm converges to distortions that are significant enough to be detectable,
but not so significant that they are clearly ruled out.
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An application to GW150914

* Fit model to data using jimgw
[Wong+23 - arXiv:2302.05333].

* Construct structured test batteties
of independent and correlated
distortions to the model and test
for misspecification.

* As expected, no significant anomaly
is present in the modelling of
GW150914, with global p-values for
all the types of analyses of around
a few tenths.

NAM, J. Alvey, C. Weniger [arXiv: 2412.15100)]
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Summary

* Model misspecification analysis strategies are integral to advancing our
understanding of physical phenomena.

* The framework presented here is designed to carry this out in a SBI context. By
leveraging classical concepts, it provides a flexible and comprehensive approach to
simultaneously perform many hypothesis tests and quantify their statistical
significance.

* Via two training strategies, we can actually test (and Monte Carlo sample) all of
these alternative hypotheses simultaneously. This makes the pipeline very efficient
when looking to test for broad classes of mismodelling, while still maintaining the
ability to carry out individual, targeted tests.

e The SNR training strategy, can be used to visualize model residuals and calibrate
the scale of distortions searched for in the data.

Thanks!
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Framework summary: analytic test
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Framework summary: correlated distortions
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Framework summary: multiple small correlated distortions
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The effect of marginalization t(x) = —21
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NAM, J. Alvey, C. Weniger [arXiv: 2412.15100)]
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