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Particle flow in ATLAS

● Problem: particle identification & energy calibration

● Particularly challenging when we have jets/showers

● Key: exploit complementary components info:
○ tracker

○ calorimeters (calo)

● Particle flow (p-flow) algorithms reconstruct 

particle’s trajectory and its energy deposit in 

detector components

● Inputs are tracks in the inner detector and topo-

clusters in calorimeter
○ topo-clusters are groups of neighbouring cells

→ useful to reconstruct showers in the calorimeter

● Goal: try to associate topo-clusters to tracks
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https://cds.cern.ch/record/2770815/files/
https://www.sciencedirect.com/science/article/abs/pii/S0168900209017264?via%3Dihub
https://link.springer.com/article/10.1140/epjc/s10052-017-5004-5


ATLAS p-flow algorithm [Eur. Phys. J. C 77 (2017) 466]

For each track in descending pT:

1. associate closest topo-cluster based on angular distance Δ𝑅′ =
Δ𝜙

𝜎𝜙

2

+
Δ𝜂

𝜎𝜂
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2. compute expected energy deposit based on the topo-cluster position and track momentum
3. if expected and measured energies differ significantly, associate more topo-clusters 
4. subtract the expected energy by calo cells 
5. if remaining energy lies within expected fluctuations, remove the remnants
6. otherwise, consider leftovers for the next track
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ATLAS p-flow algorithm: pros and cons

Existing ATLAS p-flow algorithm strengths:

● Calo + track information: 

→ improve energy resolution at low energy

● Good energy and angular resolution

● Pileup mitigation through “charged hadron subtraction”

Main limitations:

● Associate track to topo-clusters, not cells directly 

→ energy subtraction limited to fixed cluster boundaries

● No calibration currently available → only detector measurements

● Tracker usage off above 100 GeV to avoid false matches
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ATLAS p-flow algorithm: pros and cons

Existing ATLAS p-flow algorithm strengths:

● Calo + track information: 

→ improve energy resolution at low energy

● Good energy and angular resolution

● Pileup mitigation through “charged hadron subtraction”

Main limitations:

● Associate track to topo-clusters, not cells directly 

→ energy subtraction limited  to fixed cluster boundaries

● No calibration currently available → only detector measurements

● Tracker usage off above 100 GeV to avoid false matches
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Can we do better? Maybe Machine Learning (ML) can help?

[CERN-THESIS-2011-291]

Luca Clissa, University of Bologna, INFN & ATLAS – 2nd European AI for Fundamental Physics Conference, Cagliari

https://cds.cern.ch/record/1504815?ln=de


Machine Learning alternatives

● Machine Learning models have already shown promising results under various settings
○ HyperGraphs for end-to-end pflow [Eur. Phys. J. C 83 (2023) 596]

○ ongoing work on task-based solutions (matching, segmentation and calibration)

○ image-based methods for calibration [ATL-PHYS-PUB-2020-018] (central barrel reconstruction, |η|<0.7)

6

task-based: 

replace steps with ML

end-to-end:

one model, all steps

Inputs Output
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→ Outperform Local Hadronic Cell Weighting (LCW) calibration

→ Work well for both identification and energy calibration

→ However, inefficient representation and do not include tracking data

Machine Learning alternatives

● Machine Learning models have already shown promising results under various settings
○ HyperGraphs for end-to-end pflow [Eur. Phys. J. C 83 (2023) 596]

○ ongoing work on task-based solutions (matching, segmentation and calibration)

○ image-based methods for calibration [ATL-PHYS-PUB-2020-018] (central barrel reconstruction, |η|<0.7)
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replace steps with ML
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Point cloud ML for p-flow [ATL-PHYS-PUB-2022-040, ATL-SOFT-PROC-2025-018]

● Focus on pion identification and energy calibration, 
○ first step towards hadronic shower reconstruction

● Leverage point cloud data
○ only use actual hits, i.e. natural zero suppression

○ naturally handle varying granularity

○ naturally allow including tracking data

○ easily extend to including more information (momentum, hit confidence, …)

● Test 4 Deep Learning methods for point cloud data:
○ Graph Neural Network (GNN)

○ Deep Sets, Transformers, Merged Deep Fully Connected Network (DNN)

● Outline of extension to segmentation task
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Why point cloud data?

● Image-based approaches are sub-optimal
○ different spatial granularity is difficult to render

○ only encode calorimeter information (no tracker) 

○ irregular deposition geometries cause sparse images

→ inefficient representation

● Point cloud representation has several advantages
○ represent hits as 3D points with properties 

→ complex 3D shapes instead of series of images

→ features like energy, hit confidence 

○ including tracker is straightforward

○ only uses actual hits

→ efficient representation
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ATL-PHYS-PUB-2022-040

[ATL-PHYS-PUB-2020-018]
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Dataset

● Hadronic showers originate primarily from pions
○ π0: decay promptly to photons → EM calo

○ π+/-: more fluctuation in energy deposit patterns

→ EM + hadronic calorimeter

● Full ATLAS simulation using Geant4

● Uniform pion distributions in
○ azimuthal angle

○ pseudo-rapidity

○ log true energy

● 10M π0, 5M π+, 5M π-

○ 3.5M training, 500k validation, 1M test 

after quality cuts 

○ events with exactly 1 track
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Illustration using non-official data (all plots)
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Deep Learning methods

We explored several Deep Learning methods,

only some of them shown here:

● Graph Neural Networks (GNN)

● Deep Sets

● Transformers

● Convolutional Neural Networks (CNN)

● Merged Deep Fully Connected Network 

(DNN)

→ image-based approaches
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Energy calibration → regression: calibrated energy

Particle identification → classification: π0 VS π+/π-

● only calorimeter information 

→ adding tracks makes classification obvious

● input: one topo-cluster at a time

Learning tasks
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● calorimeter + tracker

● input: one track + topo-clusters in ∆R<1.2

● only calorimeter information

● input: one topo-cluster at a time



Results
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We compare ML approaches against two baselines 
depending on the learning task:

● classification
→ Electromagnetic (EM) scale + initial hadronic 
calibration step corrections: 𝒫EM

cluster

● regression
→ full Local Cell Weighting (LCW) calibration, 
i.e. 𝒫EM

cluster + additional corrections: ELCW
cluster



π0 VS π+/π- classification: calo only 

Metrics: π土 efficiency VS π0 rejection

○ π土eff = TP/(TP+FN)

○ π0
rej = 1 - FPR = TN/(TN+FP) 

● ML methods outperform 

baseline Pclus
EM

○ 4x to 8x background 

rejection in |η|<0.7

○ 2x to 6x in full η range

● GNN performs best

→ 5x background rejection 

● performance increases with 

higher topo-cluster energy
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Metrics: median energy response and resolution

○ energy response, R = Epred/Etrue

○ resolution, IQR = median R 土 1σ (16-84%)

● ML significantly better than traditional 

calibrations across entire energy spectrum

→ R closer to 1; lower IQR

● GNN is best overall

● Deep Sets better than baseline for charged 

pions, especially at low-energy (< 1 GeV)

→ known weakness in conventional techniques

● ML mitigates long-standing calibration issues
○ high-energy π± underestimation

○ low-energy π0 overestimation

Energy regression: calo only 
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Metrics: median energy response and resolution

○ energy response, R = Epred/Etrue

○ resolution, IQR = median R 土 1σ (16-84%)

● Point cloud models VS baseline: significantly 

outperform EM and LCW calibration
○ better R and IQR across the full energy spectrum

● Point cloud VS image-based (DNN): 
○ comparable median accuracy  for E < 30 GeV

○ superior performance for E > 30 GeV

● Track information dramatically improves prediction

→ IQR consistently below 0.1 

(VS 0.4 for cluster-only)

● Adding cell-level info further improves resolution, 

particularly at high energy (more in backup slides)

Energy regression: calo + tracker
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Next steps
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Cells-to-track matching

● Extend point cloud methods to tackle cells-to-track matching [12]
○ one focus track at a time

○ all hits within ΔR=0.2 (tracker + calo) form point cloud (sample)*
○ associate hits with track contributing the most energy (>50%)

○ PointCloud architecture [6], attempt with MaskFormers [7]

● Promising results for simple ρ, ∆ decays (~1 track per event)

● Trying to generalize to more challenging dijets scenarios

18

Inputs Output

Illustration using non-official data (all plots)*technically, we need to pad events with less hits to ensure point clouds with same dimensions

Luca Clissa, University of Bologna, INFN & ATLAS – 2nd European AI for Fundamental Physics Conference, Cagliari

https://cds.cern.ch/record/2922203
https://openaccess.thecvf.com/content_cvpr_2017/html/Qi_PointNet_Deep_Learning_CVPR_2017_paper.html
https://arxiv.org/abs/2312.12272


Cells-to-track matching: lessons learned (cont’d)

● Complex task, many challenges:

○ Padding strategy affects results

○ Unstable training

○ Class imbalance

● Promising configs (more in backup):

○ Dice [10] and Focal [11] losses better than weighted BCE

○ Adam-W [12] produces better performance, also reducing instability

○ SGD [13] further stabilize training, but slower to converge

○ Cyclic learning rate [14] (with warm-up [15]) is key for convergence
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Cells-to-track matching: lessons learned (cont’d)

● Select loss/metrics wisely:

○ Masking is crucial

○ Accuracy typically misleading due class imbalance

→ F1 score more robust

○ Set meaningful baselines (e.g. trivial models for majority class)
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Conclusion
● Significant improvement in π0/π± classification and energy regression

● Key findings from calorimeter-only regression:

○ GNN and Deep Sets outperform traditional calibrations across all energies

○ They mitigate long-standing calibration issues at the boundaries of energy values

○ point cloud methods outperform image-based approaches

→ and more efficient!

● Combined calorimeter and tracker regression:

○ ML models surpass EM/LCW scales

○ Dramatic improvement in energy resolution (IQR/median < 0.1)

○ Pointcloud advantage increases at high energies (> 30 GeV)

○ Granular cell-level data further enhances results

● Outlook: promising step towards ML-optimized Particle Flow in ATLAS
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Backup
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Loss and metrics for cell-to-track association

How do we measure performance?

● Use masking for selecting only cell points

● Loss and metrics are weighted by energy

Definitions:

● TP: true positives

● FP: false positives

● FN: false negatives

Loss function (several attempts):

● Weighted Binary Cross-Entropy (wBCE)

● Weighted Focal loss 

● Weighted Dice loss

Metrics

● Accuracy: (TP+TN) / (ALL)

● Precision (purity): P = TP / (TP + FP) 

● Recall (signal efficiency): R =  TP / (TP + FN)

● F1 score: 2 * P * R / (P + R)
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Focal loss

● Slight variation of BCE:

where:

and

● Less weight to «easy data», more focus on difficult examples

● This mechanism helps mitigating issues with imbalanced datasets
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Dice loss

● dice coefficient is a measure of “similarity”

● dice loss

● Specific for segmentation tasks
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0: perfect overlap

1: no overlap at all

X
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Graph Neural Network

Architecture

● 4 GNN blocks with Multi-Layer Perceptrons (MLP)

● Message passing to learn hidden representation

○ update edges: x’(i, j) = fedge(xi, xj, x(i,j))

○ update nodes: x’i = fnode(xi, Σj∈Nix’(j,i)) 

● Graph-level features as function of node embeddings:

g’i = fglobal(g, Σi∈Nx’j)

● Global features concatenated with input for classification

● Simultaneous classification and regression tasks

Components

● Cells are nodes, neighboring cells connected by edges

● Node features: energy sampling layer η, ∆η, 𝜙, ∆𝜙, r⊥
● Edge features: type of connection
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Deep Sets
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● pixels are bidimensional projections of cell 

baricenters

● pixel intensity reflects energy deposit

● considers calo layers separately to account for 

different granularity
○ EMB1 alone

○ EMB2, EMB3 together

○ Tile1, Tile2 and Tile3 together
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Convolutional Neural Networks (CNN)
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Merged Deep Fully Connected Neural Networks (DNN)

● image-based approach
○ EMB1 alone

○ EMB2, EMB3 together

○ Tile1, Tile2 and Tile3 together

● 3 fully connected hidden layers

● 50 nodes in each hidden layer

● outputs calibrated energy values
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50 nodes

50 nodes

50 nodes

tracker info

calo image
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PointNet model

Several learning tasks: classification, part 

segmentation, semantic segmentation

permutation invariant 

transformation equivariance

both shape classification & segmentation

robust to data corruption → critical points 

no local context → global feature learning

generalization to unseen scenes → global features 

depend on absolute coordinates

no rotation/shape equivariance
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Calo + track results using cell-level information

● Severall GNN configurations attempted

○ Leadining cluster only VS all clusters

○ With VS w/o edges

○ With VS w/o cell info

● GNN with cell-level data (red, light 

blue) improves resolution compared to  

versions trained without this

information under several

configurations
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Results
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● Very instable

● Training diverge

● Although initial metrics are 

satisfying, comparison with 

trivial baseline suggest model is 

just learning to predict majority 

class
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WBCE + adam +
cosine annealing
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● More stable, although high 

variability in validation curves

● Sound training curves suggest

little overfitting and potential to 

still improve

● F1 score close to 90%, much 

better than trivial baseline
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Dice + adamW +
cyclical LR with warmup
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● SGD stabilizes training, even

validation curves are smoother

● Wider training/validation gap

● Flatten validation improvement

at the end of training

● F1 score close to 85%, much 

better than trivial baseline but 

slightly worse than adamW

results
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Dice + SGD + 
cyclical LR with warmup

[ATL-COM-PHYS-2025-488]

https://cds.cern.ch/record/2825379
https://cds.cern.ch/record/2935421?ln=it
https://cds.cern.ch/record/2825379


Luca Clissa, University of Bologna, INFN & ATLAS – 2nd European AI for Fundamental Physics Conference, Cagliari

● More stable, although high 

variability in validation curves

● Increasing overfitting in final

epochs

● F1 score close to 90%, much 

better than trivial baseline

● Comparable to Dice alternative 

(just slightly better)
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Focal + adamW + 
cyclical LR with warmup
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● SGD stabilizes training, even

validation curves are smoother

● Widening training/validation

gap at end of training

● Flatten validation improvement

in the end

● F1 score close to 90%, much 

better than trivial baseline and 

close to best performance 

obtained

39

Focal + SGD +
cyclical LR with warmup
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