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• Neural Simulation-Based Inference 
(NSBI) covers a broad range of 
statistical techniques.


• Idea: build ML surrogates for powerful 
statistical inference in the presence of 


• Intractable likelihoods (e.g. LHC 
analysis), or


• when likelihoods are slow to compute 
analytically (e.g. gravitational wave 
analysis).

Introduction

Overview of typical NSBI workflow


Figure credits: Madminer
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Implicit 
likelihood

MC sampling



• The focus of this talk is on a practical application of these methods to LHC 
analysis, with an example of the off-shell Higgs boson measurement at the 
ATLAS experiment [Rep. Prog. Phys. 88 067801, Rep. Prog. Phys. 88 057803]. 


• The talk will cover:


• Efficiently modelling likelihoods as a function of complex high-dimensional 
parameter space. 

• Rigorously testing the quality of the surrogate models and their reliability 
using MC and real data.


• Building robust frequentist confidence intervals using Neyman Construction.
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NSBI at the LHC

https://iopscience.iop.org/article/10.1088/1361-6633/add370
https://iopscience.iop.org/article/10.1088/1361-6633/adcd9a


x ∼ pS(x |μ) , pB(x |μ)

Parton Shower


Hadronization


Detector 

Reconstruction

NSBI at the LHC

z ∼ pS(z |μ)

z ∼ pB(z |μ)

Simulation (forward pass)

MC events sampled from implicit likelihoods

Parton-level events sampled from analytical model



Profile Negative Log-Likelihood Fit
Surrogate Model 

for likelihood ratios

Event-by-event 
parameterized likelhood 

ratios

−2 ⋅ ∑
i∈events

log
p(xi |μ, ̂α̂)
p(xi | ̂μ, α̂)

Inference (reverse pass)

x ∼ pS(x |μ) , pB(x |μ)

Parton Shower


Hadronization


Detector 

Reconstruction

NSBI at the LHC
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Reconstructed 
events xi

μ → parameter of interest
α → nuisance parameters

Inference on model parameter μ

z ∼ pS(z |μ)

z ∼ pB(z |μ)

Rep. Prog. Phys. 88 057803

MC events sampled from implicit likelihoods

Parton-level events sampled from analytical model

https://iopscience.iop.org/article/10.1088/1361-6633/adcd9a


The off-shell Higgs boson
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The probability model of the off-shell Higgs boson:

p(x |μ) =
1

ν(μ) [μ ⋅ νS ⋅ pS(x) + μ ⋅ νI ⋅ pI(x) + νB ⋅ pB(x) + νNI ⋅ pNI(x)]{ {
pS(x) pB(x)

× =pI(x) 2 ⋅ Re

ggF Higgs Signal ggF Interfering Background

NI  Non-Interfering 
backgrounds

→ν → Exp events Parameter dependence
μ =

σH→ZZ
obs

σH→ZZ
exp

Interference 
probability

Signal probability Bkg probability



p(x |μ) =
1

ν(μ) [μ ⋅ νS ⋅ pS(x) + μ ⋅ νI ⋅ pI(x) + νB ⋅ pB(x) + νNI ⋅ pNI(x)]

The off-shell Higgs boson

7

The probability model of the off-shell Higgs boson:

{ {
pS(x) pB(x)

× =pI(x) 2 ⋅ Re

ggF Higgs Signal ggF Interfering Background

NI  Non-Interfering 
backgrounds

→ν → Exp events Parameter dependence
μ =

σH→ZZ
obs

σH→ZZ
exp

Interference 
probability

Signal probability Bkg probability

Just an example 
application - techniques 

presented here have 
broad applicability!



Previous Analysis
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Fixed S/B discriminant is often the optimal 
choice for hypothesis testing at the LHC

p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)
pB(x)

+ νB ⋅
pB(x)
pB(x)

ONN(x) = log
pS(x)

pB(x) + 0.1 ⋅ pNI(x)
S/B discriminant used in previous Run-2 
analysis of off-shell Higgs boson

Previous off-shell analysis

Phys. Lett. B 846 (2023) 138223

https://doi.org/10.1016/j.physletb.2023.138223


Previous Analysis
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Fixed S/B discriminant is often the optimal 
choice for hypothesis testing at the LHC

p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)
pB(x)

+ νB ⋅
pB(x)
pB(x)

ONN(x) = log
pS(x)

pB(x) + 0.1 ⋅ pNI(x)
S/B discriminant used in previous Run-2 
analysis of off-shell Higgs boson

Previous off-shell analysis

Phys. Lett. B 846 (2023) 138223

Trained using multi-dimensional 
input feature space

https://doi.org/10.1016/j.physletb.2023.138223


p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)
pB(x)

+ νB ⋅
pB(x)
pB(x)
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But what if the parameterization is non-linear? 

  

E.g.: interference effects of off-shell Higgs boson 
production. Single observable no longer describes 

the full parameter space!

p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)
pB(x)

+ μ ⋅ νI ⋅
pI(x)
pB(x)

+ νB ⋅
pB(x)
pB(x){

Previous Analysis

Previous off-shell analysis

Phys. Lett. B 846 (2023) 138223

Fixed S/B discriminant is often the optimal 
choice for hypothesis testing at the LHC

ONN(x) = log
pS(x)

pB(x) + 0.1 ⋅ pNI(x)

https://doi.org/10.1016/j.physletb.2023.138223


11

Previous Analysis

p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)
pB(x)

+ νB ⋅
pB(x)
pB(x)

p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)
pB(x)

+ μ ⋅ νI ⋅
pI(x)
pB(x)

+ νB ⋅
pB(x)
pB(x){

Previous Run-2 result

(Phys. Lett. B 846 (2023) 138223)

But what if the parameterization is non-linear? 

  

E.g.: interference effects of off-shell Higgs boson 
production. Single observable no longer describes 

the full parameter space!

Fixed S/B discriminant is often the optimal 
choice for hypothesis testing at the LHC

ONN(x) = log
pS(x)

pB(x) + 0.1 ⋅ pNI(x)

https://doi.org/10.1016/j.physletb.2023.138223
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Flat NLL region implies sub-optimality in 
regions with μ ⋅ νI ⋅ pI ≫ μ ⋅ νS ⋅ pS

Previous Run-2 result

(Phys. Lett. B 846 (2023) 138223)

Previous Analysis

p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)
pB(x)

+ νB ⋅
pB(x)
pB(x)

p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)
pB(x)

+ μ ⋅ νI ⋅
pI(x)
pB(x)

+ νB ⋅
pB(x)
pB(x){

Fixed S/B discriminant is often the optimal 
choice for hypothesis testing at the LHC

But what if the parameterization is non-linear? 

  

E.g.: interference effects of off-shell Higgs boson 
production. Single observable no longer describes 

the full parameter space!

ONN(x) = log
pS(x)

pB(x) + 0.1 ⋅ pNI(x)

https://doi.org/10.1016/j.physletb.2023.138223


New Analysis - NSBI
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Frequentist test using NSBI 
  

Profile Negative Log-Likelihood 
Test Statistic

−2 ⋅ ∑
i∈events

log
p(xi |μ, ̂α̂)
p(xi | ̂μ, α̂)

Off-shell Higgs measurement using NSBI

Rep. Prog. Phys. 88 057803

Surrogate Model 
for likelihood ratios

x ∼ pS(x |μ) , pB(x |μ)

MC events sampled from 
implicit likelihoods

https://iopscience.iop.org/article/10.1088/1361-6633/adcd9a


New Analysis - NSBI
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Frequentist test using NSBI 
  

Profile Negative Log-Likelihood 
Test Statistic

−2 ⋅ ∑
i∈events

log
p(xi |μ, ̂α̂)
p(xi | ̂μ, α̂)

Off-shell Higgs measurement using NSBI

Rep. Prog. Phys. 88 057803

Surrogate Model 
for likelihood ratios

x ∼ pS(x |μ) , pB(x |μ)

MC events sampled from 
implicit likelihoods

How do we train this model?

https://iopscience.iop.org/article/10.1088/1361-6633/adcd9a


New Analysis - NSBI
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Surrogate Model 
for likelihood ratios

x ∼ pS(x |μ) , pB(x |μ)

MC events sampled from 
implicit likelihoods

Proposal 1: estimate paramaterized PDFs 
 

train generative models with tractable probability 
densities (e.g. Normalizing Flows) 

p(x |μ, α)
How do we train this model?



New Analysis - NSBI
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Surrogate Model 
for likelihood ratios

x ∼ pS(x |μ) , pB(x |μ)

MC events sampled from 
implicit likelihoods

Proposal 1: estimate paramaterized PDFs 
 

train generative models with tractable probability 
densities (e.g. Normalizing Flows) 

p(x |μ, α)

Proposal 2: Estimate parameterized density ratios  




by training well-calibrated and unbiased NN classifiers and 
use in the profile likelihood ratio:





p(xi |μ, α)
pref (x)

p(xi |μ, α)
pref (x)

→
p(xi |μ, ̂α̂) / pref (x)
p(xi | ̂μ, α̂) / pref (x)

→
p(xi |μ, ̂α̂)
p(xi | ̂μ, α̂)

 can be any chosen parameter-
independent hypothesis

pref (x)

How do we train this model?



New Analysis - NSBI
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Surrogate Model 
for likelihood ratios

x ∼ pS(x |μ) , pB(x |μ)

MC events sampled from 
implicit likelihoods

Proposal 1: estimate paramaterized PDFs 
 

train generative models with tractable probability 
densities (e.g. Normalizing Flows) 

p(x |μ, α)

Proposal 2: Estimate parameterized density ratios  




by training well-calibrated and unbiased NN classifiers and 
use in the profile likelihood ratio:





p(xi |μ, α)
pref (x)

p(xi |μ, α)
pref (x)

→
p(xi |μ, ̂α̂) / pref (x)
p(xi | ̂μ, α̂) / pref (x)

→
p(xi |μ, ̂α̂)
p(xi | ̂μ, α̂)

 can be any chosen parameter-
independent hypothesis

pref (x)

How do we train this model?



New Analysis - NSBI
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Surrogate Model 
for likelihood ratios

x ∼ pS(x |μ) , pB(x |μ)

MC events sampled from 
implicit likelihoods

Proposal 1: estimate paramaterized PDFs 
 

train generative models with tractable probability 
densities (e.g. Normalizing Flows) 

p(x |μ, α)

Proposal 2: Estimate parameterized density ratios  




by training well-calibrated and unbiased NN classifiers and 
use in the profile likelihood ratio:





p(xi |μ, α)
pref (x)

p(xi |μ, α)
pref (x)

→
p(xi |μ, ̂α̂) / pref (x)
p(xi | ̂μ, α̂) / pref (x)

→
p(xi |μ, ̂α̂)
p(xi | ̂μ, α̂)

Easier to train and validate for large-dimensional inputs

 can be any chosen parameter-
independent hypothesis

pref (x)

How do we train this model?



Overview: Neural Simulation-Based Inference
Full test statistic function for frequentist parameter estimation on parameter μ

Extended 
Poisson term Constraint termsSum of event-by-event 

log-likelihood ratios

19

likelihood from 
subsidiary measurements of 

the nuisance parameters 

psubs →
total observed eventsNobs →

t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
psubs( ̂α̂)
psubs(α̂)



Overview: Neural Simulation-Based Inference

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized per-event ratios 

sum over processes 
c = S, B, etc.

parameter-
independent ratio 
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Full test statistic function for frequentist parameter estimation on parameter μ

t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
psubs( ̂α̂)
psubs(α̂)



Overview: Neural Simulation-Based Inference

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized per-event ratios 

sum over processes 
c = S, B, etc.

Parameter dependancies are 
factorized out


"Mixture models"

parameter-
independent ratio 
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Full test statistic function for frequentist parameter estimation on parameter μ

t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
psubs( ̂α̂)
psubs(α̂)

p(x |μ) =
1

ν(μ) [μ ⋅ νS ⋅ pS(x) + μ ⋅ νI ⋅ pI(x) + νB ⋅ pB(x) + νNI ⋅ pNI(x)]
{ {

E.g. in stat-only off-shell Higgs model:

fS(μ) fI(μ)



Overview: Neural Simulation-Based Inference

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized per-event ratios 

sum over processes 
c = S, B, etc.

Factorized nuisance parameter -dependence:





α

gc(x |α) =
pc(x |α)

pc(x)
Parameter dependancies are 

factorized out


"Mixture models"

parameter-
independent ratio 
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Full test statistic function for frequentist parameter estimation on parameter μ

t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
psubs( ̂α̂)
psubs(α̂)



Overview: Neural Simulation-Based Inference

sum over processes 
c = S, B, etc.

̂s(x) =
pc

pref + pc
(x)

  x ∼ pc
S = 1

 
 

x ∼ pref

S = 0
Binary Cross-Entropy loss 

pc

pref
(x) =

̂s(x)
1.0 − ̂s(x)

Two hypothesis: 

 and pc pref

"Likelihood ratio trick"
Many examples in ATLAS - HH4b background estimation, Omnifold, etc.


Classification NN
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p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

t(μ) = − 2 ⋅ log
Pois(Nobs |μ, ̂α̂)
Pois(Nobs | ̂μ, α̂)

− 2 ⋅
Nobs

∑
i=1

log
p(xi |μ, ̂α̂)/pref (xi)
p(xi | ̂μ, α̂)/pref (xi)

− 2 ⋅
Nsyst

∑
k

log
psubs( ̂α̂)
psubs(α̂)

Full test statistic function for frequentist parameter estimation on parameter μ

multi-dimensional 
kinematic inputs

x ∼

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2019-29/
https://arxiv.org/abs/2405.20041


Challenges: Systematic Uncertainties
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p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized 
per-event ratios 

sum over processes 
c = S, B, etc.

parameter-
independent ratio 

Factorized nuisance parameter -dependence:





α

gc(x |α) =
pc(x |α)

pc(x)



Challenges: Systematic Uncertainties
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p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized 
per-event ratios 

sum over processes 
c = S, B, etc.

parameter-
independent ratio 

Factorized nuisance parameter -dependence:





α

gc(x |α) =
pc(x |α)

pc(x)

Challenging due to the high-
dimensionality of α = (αm)



Challenges: Systematic Uncertainties
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p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized 
per-event ratios 

sum over processes 
c = S, B, etc.

parameter-
independent ratio 

Factorized nuisance parameter -dependence:





α

gc(x |α) =
pc(x |α)

pc(x)

Assumption 1:

Simulation points

Nominal

The effects from the various NPs 
 are orthogonal to each otherαm

Challenging due to the high-
dimensionality of α = (αm)



Challenges: Systematic Uncertainties
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p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized 
per-event ratios 

sum over processes 
c = S, B, etc.

parameter-
independent ratio 

Factorized nuisance parameter -dependence:





α

gc(x |α) =
pc(x |α)

pc(x)
= ∏

m

pc(x |αm)
pc(x)

Assumption 1:

Simulation points

Nominal

Often a fair assumption for the 
systematics model at the LHC

The effects from the various NPs 
 are orthogonal to each otherαm



Challenges: Systematic Uncertainties
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p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized 
per-event ratios 

sum over processes 
c = S, B, etc.

parameter-
independent ratio 

But we also need to estimate these 
parameterized density ratios

Simulation points

Nominal

Assumption 1:
Factorized nuisance parameter -dependence:





α

gc(x |α) =
pc(x |α)

pc(x)
= ∏

m

pc(x |αm)
pc(x)

The effects from the various NPs 
 are orthogonal to each otherαm



Challenges: Systematic Uncertainties
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p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized 
per-event ratios 

sum over processes 
c = S, B, etc.

parameter-
independent ratio 



pc(x |αm)

pc(x)

  x ∼ pc(αm)
S = 1

 
 

x ∼ pc
S = 0

Binary Cross-Entropy loss 

Two hypothesis: 

 and pc(αm) pc

Classification NN

αm

Train parameterized NNs for each  αm

"CARL" approach



Challenges: Systematic Uncertainties
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pc(x |αm)

pc(x)

  x ∼ pc(αm)
S = 1

 
 

x ∼ pc
S = 0

Binary Cross-Entropy loss 

Classification NN

αm

Train parameterized NNs for each  αm

Challenges: 

• Simulations only available at 3 parameter points -  

• Difficult to validate the NN interpolation into phase space with 
no simulations for testing. 

α0
m, α±1σa

m

Two hypothesis: 

 and pc(αm) pc



Challenges: Systematic Uncertainties
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pc(x |α±1σam )

pc(x)

  x ∼ pc(α
±1σa
m )

S = 1

 
 

x ∼ pc
S = 0

Binary Cross-Entropy loss 

Classification NN

Assumption 2:

The -dependent negative log-likelihood 
ratio is a smooth parabolic function

α

Semi-analytic approximation

Solution: train single unparameterized NNs for each  α±1σa
m

Two hypothesis: 

 and pc(αm) pc



Challenges: Systematic Uncertainties
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pc(x |α±1σam )

pc(x)

  x ∼ pc(α
±1σa
m )

S = 1

 
 

x ∼ pc
S = 0

Binary Cross-Entropy loss 

Classification NN

Assumption 2:
Semi-analytic approximation

Combine with  

Assumption 1

Solution: train single unparameterized NNs for each  α±1σa
m

Two hypothesis: 

 and pc(αm) pc

The -dependent negative log-likelihood 
ratio is a smooth parabolic function

α

gc(x |α) = ∏
m

pc(x |αm)
pc(x |α0

m = 0)



Challenges: Systematic Uncertainties
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Assumption 2:

gc(x |α) = ∏
m

pc(x |αm)
pc(x |α0

m = 0)

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Parameterized 
per-event ratios 

sum over processes 
c = S, B, etc.

parameter-
independent ratio 

Repeat for each 
systematic, for 
each process

Combine with  

Assumption 1

The -dependent negative log-likelihood 
ratio is a smooth parabolic function

α

Semi-analytic approximation



p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)

pref(x)
+ μ ⋅ νI ⋅

pI(x)
pref(x)

+ νB ⋅
pB(x)
pref(x)

+ νNI ⋅
pNI(x)
pref(x)

Results using NSBI

34

The NSBI approach learns everything, including the parameter scaling and thus the full 
interference effects

Four parameter-independent ratios are trained
(suppressing the -terms for brevity)α



p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)

pref(x)
+ μ ⋅ νI ⋅

pI(x)
pref(x)

+ νB ⋅
pB(x)
pref(x)

+ νNI ⋅
pNI(x)
pref(x)

Results using NSBI
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The NSBI approach learns everything, including the parameter scaling and thus the full 
interference effects

tμ ∼ − 2 ⋅
Nobs

∑
i=1

log
p(xi |μ)
p(xi | ̂μ)

No "fixed" S/B discriminant - asymptotic 
optimality throughout  space.μ

Additional sensitivity from unbinned 
nature

Four parameter-independent ratios are trained



Previous 
analysisNSBI 

analysis

36

No "fixed" S/B discriminant - asymptotic 
optimality throughout  space.μ

Additional sensitivity from unbinned 
nature

tμ ∼ − 2 ⋅
Nobs

∑
i=1

log
p(xi |μ)
p(xi | ̂μ)

Both analysis use same Run-2 data

The NSBI approach learns everything, including the parameter scaling and thus the full 
interference effects

Results using NSBI

p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)

pref(x)
+ μ ⋅ νI ⋅

pI(x)
pref(x)

+ νB ⋅
pB(x)
pref(x)

+ νNI ⋅
pNI(x)
pref(x)

Four parameter-independent ratios are trained

Rep. Prog. Phys. 88 057803

https://iopscience.iop.org/article/10.1088/1361-6633/adcd9a


Previous 
analysisNSBI 

analysis
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Additional sensitivity from unbinned 
nature

Huge sensitivity gain in 
interference rich regions 

 μ ⋅ pI(x) ≫ μ ⋅ pS(x)

No more flat region!

No "fixed" S/B discriminant - asymptotic 
optimality throughout  space.μ

p(x |μ)
pB(x)

∼ μ ⋅ νS ⋅
pS(x)

pref(x)
+ μ ⋅ νI ⋅

pI(x)
pref(x)

+ νB ⋅
pB(x)
pref(x)

+ νNI ⋅
pNI(x)
pref(x)

Results using NSBI

The NSBI approach learns everything, including the parameter scaling and thus the full 
interference effects

tμ ∼ − 2 ⋅
Nobs

∑
i=1

log
p(xi |μ)
p(xi | ̂μ)

Rep. Prog. Phys. 88 057803

Four parameter-independent ratios are trained

https://iopscience.iop.org/article/10.1088/1361-6633/adcd9a


Monte Carlo Diagnostics
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NN predicted 

MC estimate

log
p(x |μ)
pref (x)

(x)

log
Nbin(x |μ)

Nbin
ref (x) Excellent agreement!

The NN ratios are meticulously trained to be true representations of the density ratios

Does the NN output correspond to real 
probabilities?

Do the ratios capture the full un-biased 
dependence of the multi-dimensional 
feature space  ?xlog

p(x |μ)
pref (x)

(x) ↔ log
Nbin(x |μ)

Nbin
ref (x)

?

High-level multivariate observable

p(x |1.7)
p(x |1)

× p(x |1) ∼ p(x |1.7)

NN prediction

MC sample
MC sample

Excellent agreement!



Where does the sensitivity come from?
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p(xi |μ = 0.5) ≫ p(x | ̂μ)

p(xi |μ = 0.5) ≪ p(x | ̂μ)

The per-event negative log-likelihood ratio allows a probe to identify phase 
space regions that contribute to the final analysis senstivity.


This allows to identify phase space regions that need robust modeling from 
Monte Carlo samples. 




(no sensitivity regions)

p(xi |μ = 1.5) = p(x | ̂μ)



Real Data Diagnostics
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A rigorous data-MC comparison is performed using the parameterized density ratios

Check agreement as a function of any parameter  valueμ



Building Frequentist Confidence Intervals

• Analysis with non-linear parameterizations do 
not follow Wald approximation:


• Neyman construction is essential. 

• But standard LHC techniques like Poisson PDF 
sampling cannot work directly.


• This is because the NSBI technique presented 
here does not have a PDF  to sample 
pseudo-data from - only the density ratios:





p(x |μ, α)

p(x |μ, α)
pref(x)
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Previous Histogram-based  measurementH* → ZZ

arXiv: 1007.1727

Previous off-shell analysis

Phys. Lett. B 846 (2023) 138223

https://arxiv.org/pdf/1007.1727
https://doi.org/10.1016/j.physletb.2023.138223


Neyman Construction for NSBI
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• The trained density ratios are used to create unbiased Asimov samples with MC weights 
 for any value of the  parameter space: 

 

• Pseudo-experiments are then sampled using the Poisson bootstrap method -
.


wA μ, α

wA(x |μtruth, α) =
ν(μ, α)

νref
⋅

p(x |μtruth, α)
pref(x)

⋅ wref(x)

wpseudo−data(x) = Poisson( wA(x |μtruth, α) )

MC weights of 
reference sample

Rep. Prog. Phys. 88 067801Rep. Prog. Phys. 88 067801

https://iopscience.iop.org/article/10.1088/1361-6633/add370
https://iopscience.iop.org/article/10.1088/1361-6633/add370


Conclusion and Outlook

• An implementation of NSBI was presented focused on building likelihood ratios as a 
function of complex, large-dimensional parameter spaces using well-motivated 
approximations.


• The NSBI approach presented in this talk has broad applicability across LHC 
analysis - particularly effective when the likelihood model is non-linear in the 
parameter of interest and when multi-dimensional information is needed for extra 
precision.


• The various conceptual and computational developments have been done and 
published in these companion papers by ATLAS: 


• Rep. Prog. Phys. 88 067801 [General NSBI method presented in this talk]

 

• Rep. Prog. Phys. 88 057803 [Application to off-shell Higgs boson and Higgs boson 

width measurement with the ATLAS experiment]


https://iopscience.iop.org/article/10.1088/1361-6633/add370
https://iopscience.iop.org/article/10.1088/1361-6633/adcd9a


Backup



Parameterized Observables and Unbinning
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The improved sensitivity from using the 
NSBI approach is a result of:


• using parameterized information 
for the hypothesis testing


• and doing an unbinned fit 




Per-event analog of


standard techniques

Uncertainty Parameterization

p(xi |μ, α)
pref(xi)

=
1

∑c Gc(α) ⋅ fc(μ) ⋅ νc ∑
c [ fc(μ) ⋅ gc(xi |α) ⋅ νc ⋅

pc(xi)
pref(xi) ]

Factorized per-event -dependence:





with  estimated using a mix of 
NNs and analytic interpolation techniques:

α

gc(x |α) = ∏
k

pc(x |αk)
pc(x)

pc(x |αk)/pc(x)
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Factorized yield -dependence:





with  estimated using analytic 
interpolation techniques:

α

Gc(α) = ∏
k

νc(αk)
νc

νc(αk)/νc

νc(αk)
νc

=
( νc(α+

k )
νc )

αk

αk > 1

1 + ∑6
n=1 cnαn

k −1 ≤ αk ≤ 1

( νc(α−
k )

νc )
−αk

αk < − 1

,

Available from simulations

at αk = 0, α+

k , α−
k

pc(x |αk)
pc(x)

=
( pc(x |α+

k )
pc(x) )

αk

αk > 1

1 + ∑6
n=1 cnαn

k −1 ≤ αk ≤ 1

( pc(x |α−
k )

pc(x) )
−αk

αk < − 1

.

Density ratios trained using NNs from simulations

at αk = 0, α+

k , α−
k

Ref: HistFactory

https://cds.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf


Truth Value

By building an ensemble of NNs per  we become robust against the bias in the fit value:pc /pref

̂μ → μtruth

  x ∼ pc
S = 1

 
 

x ∼ pref

S = 0
} pc

pref
(x) =

1
Nens

Nens

∑
a [ pc

pref
(x)]

a

Training data 
resampled without 

replacement

Surrogate model 
from an ensemble 

of trained NNs
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Challenge: The best fit value from a profile likelihood fit  with a single NN per  is biased. 

Solution: An ensemble of  or more NNs were trained to be robust against this bias.

̂μ pc /pref

O(100)

Challenges: Density Ratio Estimation



Event Kinematics 
x ∼ pc2

(x)

 500×

Interp( )α Interp( )α

Systematic 1 Systematic 2

 500×

× ×

× fc2
(μ)

Interp( )α Interp( )α

Systematic 1 Systematic 2

× ×

+
p(x |μ, α)

pref(x)

x

x

x

x

× fc1
(μ)

Event Kinematics 
x ∼ pc1

(x)

+1σ −1σ +1σ −1σ

+1σ −1σ +1σ −1σ

Production channel 1 
pc1

(x)/pref (x)

Production channel 2 
pc2

(x)/pref (x)

Full workflow of the NSBI Analysis

2 × O(100) NPs


