An Implementation of Neural Simulation-Based Inference for Parameter Estimation at the LHC

Jay Sandesara on behalf of the ATLAS collaboration

Introduction

 Neural Simulation-Based Inference (NSBI) covers a broad range of statistical techniques.

- **Idea:** build ML surrogates for powerful statistical inference in the presence of
 - Intractable likelihoods (e.g. LHC analysis), or
 - when likelihoods are slow to compute analytically (e.g. gravitational wave analysis).

Overview of typical NSBI workflow

Figure credits: Madminer

NSBI at the LHC

- The focus of this talk is on a practical application of these methods to LHC analysis, with an example of the off-shell Higgs boson measurement at the ATLAS experiment [Rep. Prog. Phys. 88 067801, Rep. Prog. Phys. 88 057803].
- The talk will cover:

 Efficiently modelling likelihoods as a function of complex high-dimensional parameter space.

 Rigorously testing the quality of the surrogate models and their reliability using MC and real data.

• Building robust frequentist confidence intervals using Neyman Construction.

NSBI at the LHC

Parton-level events sampled from analytical model

MC events sampled from implicit likelihoods

 $x \sim p_S(x \mid \mu), p_B(x \mid \mu)$

NSBI at the LHC

.

MC events sampled from implicit likelihoods

 $x \sim p_S(x \mid \mu), p_B(x \mid \mu)$

5

The off-shell Higgs boson

The probability model of the off-shell Higgs boson:

$$p(x \mid \mu) = \frac{1}{\nu(\mu)} \begin{bmatrix} \mu \cdot \nu_{S} \cdot p_{S}(x) + \sqrt{\mu} \cdot \nu_{I} \cdot p_{I}(x) + \nu_{B} \cdot p_{B}(x) + \nu_{NI} \cdot p_{NI}(x) \end{bmatrix}$$

$$\nu \rightarrow \text{Exp events} \qquad \text{Parameter dependence} \qquad \mu = \frac{\sigma_{obs}^{H \rightarrow ZZ}}{\sigma_{exp}^{H \rightarrow ZZ}} \qquad \qquad \text{NI} \rightarrow \text{Non-Interfering}$$

$$backgrounds \qquad \qquad \text{Bkg probability} \qquad$$

Interference probability

ggF Higgs Signal

ggF Interfering Background

The off-shell Higgs boson

The probability model of the off-shell Higgs boson:

~ Z

Interference probability

ggF Higgs Signal

8 WW

ggF Interfering Background

8 200

 $h \sim z$

Fixed S/B discriminant is often the optimal choice for hypothesis testing at the LHC

S/B discriminant used in previous Run-2 analysis of off-shell Higgs boson

Fixed S/B discriminant is often the optimal choice for hypothesis testing at the LHC

Fixed S/B discriminant is often the optimal choice for hypothesis testing at the LHC

But what if the parameterization is non-linear?

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_B(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_B(x)} + \nu_B \cdot \frac{p_B(x)}{p_B(x)}$$

E.g.: interference effects of off-shell Higgs boson production. Single observable no longer describes the full parameter space!

Fixed S/B discriminant is often the optimal choice for hypothesis testing at the LHC

But what if the parameterization is non-linear?

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_B(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_B(x)} + \nu_B \cdot \frac{p_B(x)}{p_B(x)}$$

E.g.: interference effects of off-shell Higgs boson production. Single observable no longer describes the full parameter space!

Fixed S/B discriminant is often the optimal choice for hypothesis testing at the LHC

But what if the parameterization is non-linear?

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_B(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_B(x)} + \nu_B \cdot \frac{p_B(x)}{p_B(x)}$$

E.g.: interference effects of off-shell Higgs boson production. Single observable no longer describes the full parameter space!

Flat NLL region implies sub-optimality in regions with $\sqrt{\mu} \cdot \nu_I \cdot p_I \gg \mu \cdot \nu_S \cdot p_S$

Frequentist test using NSBI

Profile Negative Log-Likelihood Test Statistic

Off-shell Higgs measurement using NSBI Rep. Prog. Phys. 88 057803

Surrogate Model for likelihood ratios

MC events sampled from implicit likelihoods

 $x \sim p_S(x \mid \mu), p_B(x \mid \mu)$

Frequentist test using NSBI

How do we train this model?

Surrogate Model for likelihood ratios

MC events sampled from implicit likelihoods

 $x \sim p_S(x \mid \mu), p_B(x \mid \mu)$

Profile Negative Log-Likelihood Test Statistic

$$-2 \cdot \sum_{i \in events} \log \frac{p(x_i | \mu, \hat{\alpha})}{p(x_i | \hat{\mu}, \hat{\alpha})}$$

Off-shell Higgs measurement using NSBI Rep. Prog. Phys. 88 057803

Proposal 1: estimate paramaterized PDFs $p(x \mid \mu, \alpha)$

train generative models with tractable probability densities (e.g. Normalizing Flows)

Surrogate Model for likelihood ratios

 $x \sim p_S(x \mid \mu), p_B(x \mid \mu)$

Surrogate Model for likelihood ratios

MC events sampled from implicit likelihoods

 $x \sim p_S(x \mid \mu), p_B(x \mid \mu)$

Proposal 1: estimate paramaterized PDFs $p(x \mid \mu, \alpha)$

train generative models with tractable probability densities (e.g. Normalizing Flows)

Proposal 2: Estimate parameterized density ratios

 $\frac{p(x_i \,|\, \mu, \alpha)}{p_{ref}(x)}$

by training well-calibrated and unbiased NN classifiers and use in the profile likelihood ratio:

$p(x_i \mu, \alpha)$	\rightarrow	$p(x_i \mu, \hat{\hat{\alpha}}) / p_{ref}(x)$	\rightarrow	$p(x_i \mu, \hat{\hat{\alpha}})$
$p_{ref}(x)$		$\overline{p(x_i \hat{\mu}, \hat{\alpha}) / p_{ref}(x)}$		$\overline{p(x_i \hat{\mu}, \hat{\alpha})}$

 $p_{ref}(x)$ can be any chosen **parameterindependent** hypothesis

Surrogate Model for likelihood ratios

MC events sampled from implicit likelihoods

 $x \sim p_S(x \mid \mu), p_B(x \mid \mu)$

Proposal 1: estimate paramaterized PDFs $p(x \mid \mu, \alpha)$

train generative models with tractable probability densities (e.g. Normalizing Flows)

Proposal 2: Estimate parameterized density ratios

 $\frac{p(x_i \,|\, \mu, \alpha)}{p_{ref}(x)}$

by training well-calibrated and unbiased NN classifiers and use in the profile likelihood ratio:

$$\frac{p(x_i \mid \mu, \alpha)}{p_{ref}(x)} \to \frac{p(x_i \mid \mu, \hat{\alpha}) / p_{ref}(x)}{p(x_i \mid \hat{\mu}, \hat{\alpha}) / p_{ref}(x)} \to \frac{p(x_i \mid \mu, \hat{\alpha})}{p(x_i \mid \hat{\mu}, \hat{\alpha})}$$

 $p_{ref}(x)$ can be any chosen **parameterindependent** hypothesis

for likelihood ratios

MC events sampled from implicit likelihoods

 $x \sim p_S(x \mid \mu), p_B(x \mid \mu)$

Proposal 1: estimate paramaterized PDFs $p(x \mid \mu, \alpha)$

train generative models with tractable probability densities (e.g. Normalizing Flows)

Easier to train and validate for large-dimensional inputs

Proposal 2: Estimate parameterized density ratios $\frac{p(x_i | \mu, \alpha)}{p_{ref}(x)}$ by training well-calibrated and unbiased NN classifiers and use in the profile likelihood ratio: $\frac{p(x_i | \mu, \alpha)}{p_{ref}(x)} \rightarrow \frac{p(x_i | \mu, \hat{\alpha}) / p_{ref}(x)}{p(x_i | \hat{\mu}, \hat{\alpha}) / p_{ref}(x)} \rightarrow \frac{p(x_i | \mu, \hat{\alpha})}{p(x_i | \hat{\mu}, \hat{\alpha})}$

> $p_{ref}(x)$ can be any chosen **parameter**independent hypothesis

Full test statistic function for frequentist parameter estimation on parameter μ

$$t(\mu) = -2 \cdot \log \frac{\mathsf{Pois}(N_{obs} | \mu, \hat{\alpha})}{\mathsf{Pois}(N_{obs} | \hat{\mu}, \hat{\alpha})} - 2 \cdot \sum_{i=1}^{N_{obs}} \log \frac{p(x_i | \mu, \hat{\alpha}) / p_{ref}(x_i)}{p(x_i | \hat{\mu}, \hat{\alpha}) / p_{ref}(x_i)} - 2 \cdot \sum_{k}^{N_{syst}} \log \frac{p_{subs}(\hat{\alpha})}{p_{subs}(\hat{\alpha})}$$

Extended

Extended Poisson term Sum of event-by-event log-likelihood ratios

Constraint terms

$$N_{obs} \rightarrow$$
 total observed events

 $p_{subs} \rightarrow$ likelihood from subsidiary measurements of the nuisance parameters

Full test statistic function for frequentist parameter estimation on parameter μ

$$t(\mu) = -2 \cdot \log \frac{\mathsf{Pois}(N_{obs} | \mu, \hat{\alpha})}{\mathsf{Pois}(N_{obs} | \hat{\mu}, \hat{\alpha})} - 2 \cdot \sum_{i=1}^{N_{obs}} \log \frac{p(x_i | \mu, \hat{\alpha})/p_{ref}(x_i)}{p(x_i | \hat{\mu}, \hat{\alpha})/p_{ref}(x_i)} - 2 \cdot \sum_{k}^{N_{syst}} \log \frac{p_{subs}(\hat{\alpha})}{p_{subs}(\hat{\alpha})}$$

$$parameter-independent ratio$$

$$\frac{p(x_i | \mu, \alpha)}{p_{ref}(x_i)} = \frac{1}{\sum_{c} G_{c}(\alpha) \cdot f_{c}(\mu) \cdot \nu_{c}} \sum_{c} \left[f_{c}(\mu) \cdot g_{c}(x_i | \alpha) \cdot \nu_{c} \cdot \frac{p_{c}(x_i)}{p_{ref}(x_i)} \right]$$

Parameterized per-event ratios

Full test statistic function for frequentist parameter estimation on parameter μ

Full test statistic function for frequentist parameter estimation on parameter μ

Full test statistic function for frequentist parameter estimation on parameter μ

X

$$t(\mu) = -2 \cdot \log \frac{\mathsf{Pois}(N_{obs} \mid \mu, \hat{\alpha})}{\mathsf{Pois}(N_{obs} \mid \hat{\mu}, \hat{\alpha})} - 2 \cdot \sum_{i=1}^{N_{obs}} \log \frac{p(x_i \mid \mu, \hat{\alpha}) / p_{ref}(x_i)}{p(x_i \mid \hat{\mu}, \hat{\alpha}) / p_{ref}(x_i)} - 2 \cdot \sum_{k}^{N_{ops}} \log \frac{p_{subs}(\hat{\alpha})}{p_{subs}(\hat{\alpha})}$$

$$\underbrace{\mathsf{sum over processes}}_{c = S, B, \text{eto.}}$$

$$\underbrace{p(x_i \mid \mu, \alpha)}_{p_{ref}(x_i)} = \frac{1}{\sum_c G_c(\alpha) \cdot f_c(\mu) \cdot \nu_c} \sum_c \left[f_c(\mu) \cdot g_c(x_i \mid \alpha) \cdot \nu_c \cdot \frac{p_c(x_i)}{p_{ref}(x_i)} \right]$$

$$\overset{\sim \text{multi-dimensional kinematic inputs}}{\underset{kinematic inputs}{x \sim p_{ref}}} \underbrace{s(x) = \frac{p_c}{p_{ref} + p_c}(x)}_{Ciassification NN} \underbrace{f(x) = \frac{p_c}{p_{ref} + p_c}(x)}_{Ciassification Vick}$$

$$\underbrace{\mathsf{Many examples in ATLAS - \underline{\mathsf{HH4b background estimation, Omnifold, etc.}}_{zintering to the track}$$

Factorized **nuisance parameter** α -dependence:

$$g_c(x \mid \alpha) = \frac{p_c(x \mid \alpha)}{p_c(x)}$$

Factorized **nuisance parameter** α -dependence:

$$g_c(x \mid \alpha) = \frac{p_c(x \mid \alpha)}{p_c(x)}$$

Challenging due to the highdimensionality of $\alpha = (\alpha_m)$

Assumption 1:

$$g_c(x \mid \alpha) = \frac{p_c(x \mid \alpha)}{p_c(x)}$$

Factorized **nuisance parameter** α -dependence:

Challenging due to the highdimensionality of $\alpha = (\alpha_m)$

 α_m are orthogonal to each other

Assumption 1:

Factorized **nuisance parameter** α -dependence:

Factorized **nuisance parameter** α -dependence:

But we also need to estimate these parameterized density ratios

The effects from the various NPs α_m are orthogonal to each other

Train parameterized NNs for each α_m

"CARL" approach

Train parameterized NNs for each α_m

Challenges:

- Simulations only available at 3 parameter points $\alpha_m^0, \alpha_m^{\pm 1\sigma_a}$
- Difficult to validate the NN interpolation into phase space with no simulations for testing.

Assumption 2:

Semi-analytic approximation

$$\frac{p_c(x|\alpha_m)}{p_c(x)} = \begin{cases} \left(\frac{p_c(x|\alpha_m^{+1\sigma_a})}{p_c(x)}\right)^{\alpha_m} & \alpha_m > 1\\ 1 + \sum_{i=1}^6 a_i \boldsymbol{\alpha}_m^i & -1 \le \alpha_m \le 1\\ \left(\frac{p_c(x|\alpha_m^{-1\sigma_a})}{p_c(x)}\right)^{-\alpha_m} & \alpha_m < -1 \end{cases}$$

The α -dependent negative log-likelihood ratio is a smooth parabolic function

Assumption 2:

Semi-analytic approximation

$$\frac{p_c(x|\alpha_m)}{p_c(x)} = \begin{cases} \left(\frac{p_c(x|\alpha_m^{+1\sigma_a})}{p_c(x)}\right)^{\alpha_m} & \alpha_m > 1\\ 1 + \sum_{i=1}^6 a_i \boldsymbol{\alpha}_m^i & -1 \le \alpha_m \le 1\\ \left(\frac{p_c(x|\alpha_m^{-1\sigma_a})}{p_c(x)}\right)^{-\alpha_m} & \alpha_m < -1 \end{cases}$$

Assumption 1

$$g_c(x \mid \alpha) = \prod_m \frac{p_c(x \mid \alpha_m)}{p_c(x \mid \alpha_m^0 = 0)}$$

The α -dependent negative log-likelihood ratio is a smooth parabolic function

ratio is a smooth parabolic function

The NSBI approach learns everything, including the parameter scaling and thus the full interference effects

$$\frac{p(x \mid \mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_{ref}(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_{ref}(x)} + \nu_B \cdot \frac{p_B(x)}{p_{ref}(x)} + \nu_{NI} \cdot \frac{p_{NI}(x)}{p_{ref}(x)}$$

Four parameter-independent ratios are trained (suppressing the α -terms for brevity)

The NSBI approach learns everything, including the parameter scaling and thus the full interference effects

$$\frac{p(x|\mu)}{p_B(x)} \sim \mu \cdot \nu_S \cdot \frac{p_S(x)}{p_{ref}(x)} + \sqrt{\mu} \cdot \nu_I \cdot \frac{p_I(x)}{p_{ref}(x)} + \nu_B \cdot \frac{p_B(x)}{p_{ref}(x)} + \nu_{NI} \cdot \frac{p_{NI}(x)}{p_{ref}(x)}$$
Four parameter-independent ratios are trained
$$t_{\mu} \sim -2 \cdot \sum_{i=1}^{N_{obs}} \log \frac{p(x_i|\mu)}{p(x_i|\hat{\mu})}$$

No "fixed" S/B discriminant - asymptotic optimality throughout μ space.

Additional sensitivity from unbinned nature

The NSBI approach learns everything, including the parameter scaling and thus the full interference effects

$$\frac{p(x|\mu)}{p_{B}(x)} \sim \mu \cdot \nu_{S} \cdot \frac{p_{S}(x)}{p_{ref}(x)} + \sqrt{\mu} \cdot \nu_{I} \cdot \frac{p_{I}(x)}{p_{ref}(x)} + \nu_{B} \cdot \frac{p_{B}(x)}{p_{ref}(x)} + \nu_{NI} \cdot \frac{p_{NI}(x)}{p_{ref}(x)} + \nu$$

 $\mu_{\text{off-shell}}$

The NSBI approach learns everything, including the parameter scaling and thus the full interference effects

$$\frac{p(x \mid \mu)}{p_{B}(x)} \sim \mu \cdot v_{S} \cdot \frac{p_{S}(x)}{p_{ref}(x)} + \sqrt{\mu} \cdot v_{I} \cdot \frac{p_{I}(x)}{p_{ref}(x)} + v_{B} \cdot \frac{p_{B}(x)}{p_{ref}(x)} + v_{NI} \cdot \frac{p_{NI}(x)}{p_{ref}(x)}$$
Four parameter-independent ratios are trained
$$nalysis$$
Four parameter-independent ratios are trained
$$nalysis$$
NSBI
analysis
analysis
$$\frac{p_{NI}(x)}{p_{ref}(x)} + v_{NI} \cdot \frac{p_{NI}(x)}{p_{ref}(x)} + v_{NI} \cdot \frac{p_{NI}(x)}{p_{NI}(x)} + \frac{p_{NI}(x)}{p_{NI$$

Monte Carlo Diagnostics

The NN ratios are meticulously trained to be true representations of the density ratios

Do the ratios capture the full un-biased dependence of the multi-dimensional feature space *x* ?

Where does the sensitivity come from?

The per-event negative log-likelihood ratio allows a probe to identify phase space regions that contribute to the final analysis senstivity.

This allows to identify phase space regions that need robust modeling from Monte Carlo samples.

Real Data Diagnostics

A rigorous data-MC comparison is performed using the parameterized density ratios

Check agreement as a function of any parameter μ value

Building Frequentist Confidence Intervals

• Analysis with non-linear parameterizations do not follow Wald approximation:

$$-2\ln\lambda(\mu) = rac{(\mu-\hat{\mu})^2}{\sigma^2}$$
 X

arXiv: 1007.1727

- Neyman construction is essential.
- But standard LHC techniques like Poisson PDF sampling cannot work directly.
- This is because the NSBI technique presented here does not have a PDF $p(x | \mu, \alpha)$ to sample pseudo-data from - only the density ratios:

$$\frac{p(x \mid \mu, \alpha)}{p_{ref}(x)}$$

Previous Histogram-based $H^* \rightarrow ZZ$ measurement

Neyman Construction for NSBI

• The trained density ratios are used to create unbiased Asimov samples with MC weights w_A for any value of the μ , α parameter space:

$$w_A(x \mid \mu_{truth}, \alpha) = \frac{\nu(\mu, \alpha)}{\nu_{ref}} \cdot \frac{p(x \mid \mu_{truth}, \alpha)}{p_{ref}(x)} \cdot w_{ref}(x)$$
 MC weights of reference sample

• Pseudo-experiments are then sampled using the Poisson bootstrap method $w_{pseudo-data}(x) = Poisson(w_A(x | \mu_{truth}, \alpha)).$

Conclusion and Outlook

- An implementation of NSBI was presented focused on building likelihood ratios as a function of complex, large-dimensional parameter spaces using well-motivated approximations.
- The NSBI approach presented in this talk has broad applicability across LHC analysis - particularly effective when the likelihood model is non-linear in the parameter of interest and when multi-dimensional information is needed for extra precision.
- The various conceptual and computational developments have been done and published in these companion papers by ATLAS:
 - <u>Rep. Prog. Phys. 88 067801</u> [General NSBI method presented in this talk]
 - <u>Rep. Prog. Phys. 88 057803</u> [Application to off-shell Higgs boson and Higgs boson width measurement with the ATLAS experiment]

Backup

Parameterized Observables and Unbinning

The improved sensitivity from using the NSBI approach is a result of:

- using parameterized information for the hypothesis testing
- and doing an unbinned fit

Uncertainty Parameterization

$$\frac{p(x_i | \mu, \alpha)}{p_{ref}(x_i)} = \frac{1}{\sum_c G_c(\alpha) \cdot f_c(\mu) \cdot \nu_c} \sum_c \left[f_c(\mu) \cdot g_c(x_i | \alpha) \cdot \nu_c \cdot \frac{p_c(x_i)}{p_{ref}(x_i)} \right]$$

Factorized yield α -dependence:
$$G_c(\alpha) = \prod_k \frac{\nu_c(\alpha_k)}{\nu_c}$$
Per-event analog of standard techniques
$$g_c(x | \alpha) = \prod_k \frac{p_c(x | \alpha_k)}{p_c(x)}$$

with $\nu_c(\alpha_k)/\nu_c$ estimated using **analytic interpolation techniques:**

Available from simulations
at
$$\alpha_k = 0$$
, α_k^+ , α_k^-

$$\frac{\nu_c(\alpha_k)}{\nu_c} = \begin{cases} \left(\frac{\nu_c(\alpha_k^+)}{\nu_c}\right)^{\alpha_k} & \alpha_k > 1 \\ 1 + \sum_{n=1}^6 c_n \alpha_k^n & -1 \le \alpha_k \le 1, \\ \left(\frac{\nu_c(\alpha_k^-)}{\nu_c}\right)^{-\alpha_k} & \alpha_k < -1 \end{cases}$$

with $p_c(x \mid \alpha_k)/p_c(x)$ estimated using a mix of NNs and analytic interpolation techniques:

Density ratios trained using NNs from simulations $\alpha^+ \alpha^-$

$$\frac{\operatorname{at} \alpha_{k} = 0, \ \alpha_{k}^{+}, \ \alpha_{k}}{p_{c}(x \mid \alpha_{k})} = \begin{cases} \left(\underbrace{\frac{p_{c}(x \mid \alpha_{k}^{+})}{p_{c}(x)}} \right)^{\alpha_{k}} & \alpha_{k} > 1 \\ 1 + \sum_{n=1}^{6} c_{n} \alpha_{k}^{n} & -1 \le \alpha_{k} \le 1 \\ \left(\underbrace{\frac{p_{c}(x \mid \alpha_{k}^{-})}{p_{c}(x)}} \right)^{-\alpha_{k}} & \alpha_{k} < -1 \end{cases}$$

Challenges: Density Ratio Estimation

Challenge: The best fit value from a profile likelihood fit $\hat{\mu}$ with a single NN per p_c/p_{ref} is biased.

Solution: An ensemble of O(100) or more NNs were trained to be robust against this bias.

By building an ensemble of NNs per p_c/p_{ref} we become **robust against the bias** in the fit value:

$$\hat{\mu} \rightarrow \mu_{truth}$$

Full workflow of the NSBI Analysis

