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We are entering in the era of  
ultra-high precision cosmology…

… but comparing next-generation 
cosmic data against the vast space 
of theories is a huge challenge

Intractable noise models

Expensive simulations

High-dimensional parameter spaces
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Simulation based inference (SBI) provides a powerful  
alternative to solve complex inference problems

III. Inference: evaluate trained NN at  to get x = x0 p(θ |x0)

I. Simulation:  get  data-param. samples  N x, θ ∼ p(x |θ) p(θ)

Simulator / Implicit likelihood

II. Training: train a NN to learn posterior  fϕ(θ, x) ≃ p(θ |x)

p(θ |x)

Simulator Posteriorsxθ

Steps:
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Benefits:

“Likelihood-free”

Simulator-efficient 

Scalable

Locally amortised

Simulation based inference (SBI) provides a powerful  
alternative to solve complex inference problems

Strong advantages even  
for explicit likelihoods
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SBI has already been applied to different LSS surveys:

HSC [Novaes et al. (2024)]

BOSS [Lemos et al. (2023)]

KiDS [von Wietersheim-Kramsta et al. (2024)]

DES [Jeffrey et al. (2024)]

https://arxiv.org/abs/2409.01301
https://arxiv.org/abs/2310.15256
https://arxiv.org/abs/2404.15402
https://arxiv.org/abs/2403.02314
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SBI has already been applied to different LSS surveys:

HSC [Novaes et al. (2024)]

BOSS [Lemos et al. (2023)]

KiDS [von Wietersheim-Kramsta et al. (2024)]

DES [Jeffrey et al. (2024)]

MNRE = Marginal Neural Ratio Estimation
[Miller et al (2020)]Implemented in Swyft 

Apply SBI to accelerate parameter inference  
from a Stage-IV photometric survey like Euclid 

GOAL

https://arxiv.org/abs/2409.01301
https://arxiv.org/abs/2310.15256
https://arxiv.org/abs/2404.15402
https://arxiv.org/abs/2403.02314
https://arxiv.org/abs/2011.13951
https://github.com/undark-lab/swyft
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Which are the Euclid primary observables?

Background galaxies

foreground  
galaxies  
(positions)

Lensed image 
of background 
galaxies (shapes)
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Summarise maps of galaxy positions/shapes using three 2-point 
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Cosmic Shear

Galaxy clustering
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Which are the Euclid primary observables?
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Summarise maps of galaxy positions/shapes using three 2-point 
statistics (3x2pt) measured at 10 tomographic redshift bins

Cosmic Shear

Galaxy clustering

Galaxy-Galaxy lensing

…described by angular power spectra CXY
ij (ℓ) = ∫ dz WX

i (z)WY
j (z) Pm(kℓ, z)

Which are the Euclid primary observables?
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SBI analysis of Euclid 3x2pt

ĈAB
ij (ℓ) = CAB

ij (ℓ) + nAB
ij (ℓ)

𝒩(0,C)
We generate 50k realisations of  
3x2pt spectra with gaussian noise

1. Simulator:
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SBI analysis of Euclid 3x2pt

ĈAB
ij (ℓ) = CAB

ij (ℓ) + nAB
ij (ℓ)

𝒩(0,C)
We generate 50k realisations of  
3x2pt spectra with gaussian noise

1. Simulator:

2. Network: We pre-compress spectra into param-specific features using PCA

{H0, ωcdm, ns . . . } + {AIA, b1, . . . }
Nparams

cosmo nuisance

x = .... . .

Nspectra × Nbin,ℓ

.............................

..........................

ℓℓ

C
AB ij

(ℓ
)

....

compression

1 Cholesky

2 PCA

3 Linear

S1

..
.

S2Nparams

features

θi

θj

Si2
Sj1

Sj2

Si1

θ = θi

Si2

0
Si1

p(θi, θj |x)
p(θi |x)

ratio estimators
∀(i, j), where i ≠ j

p(θi, θj |x)
p(θi |x)
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Forecast ΛCDM  
posteriors

GFA et al. (2024)
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Forecast ΛCDM  
posteriors

SBI and MCMC are in 
excellent agreement! 

GFA et al. (2024)

https://arxiv.org/abs/2403.14750
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Forecast ΛCDM  
posteriors

SBI and MCMC are in 
excellent agreement! 

Dramatic reduction  
in CPU time!

GFA et al. (2024)

https://arxiv.org/abs/2403.14750
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We used a simplified Euclid 
likelihood/simulator 
(only 12 nuisance parameters)

GFA et al. (2024)

https://arxiv.org/abs/2403.14750
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Still good results with a more 
realistic Euclid simulator  
(32 nuisance parameters)

Plot by Alexandra Wernersson

PRELIMINARY
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What about combining different cosmological probes?
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What about combining different cosmological probes?

Canonical example:
Planck 2018 Results. VI. 

https://arxiv.org/abs/1807.06209
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Joint analyses of CMB & LSS

CMB

LSS

             Very complementary  
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Joint analyses of CMB & LSS

CMB

LSS

             Very complementary  
(high-  vs. low- , linear vs. non-linear)z z

Break parameter degeneracies
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Can we do CMB+LSS analyses in SBI?

Unfortunately, building a realistic Planck simulator seems very challenging

low-ℓ:  non-gaussian, pixel-based high-ℓ:  47 nuisance to model instrument & foregrounds
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The auxiliary variable trick

IDEA: build an “effective” simulator using posterior samples from a previous MCMC

I. Train NN with  a ∼ p(a |θ) ⟺ a = θ − θ′ 

prior samples posterior samples for x0

II. Evaluate trained NN:    fϕ(θ |a = 0) ≃ p(θ |x0)

This can now be combined 
with an arbitrary simulator a, y, θ ∼ p(a |θ) p(y |θ) p(θ)

Simulator / implicit likelihood

Explicit likelihood
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Application to evolving dark energy

DESI BAO DR2 (2025)

w(a) = w0 + wa(1 − a)

NOTE: -dark energy is recovered at Λ (w0, wa) = (−1,0)

https://arxiv.org/abs/2503.14738
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Application to evolving dark energy

DESI BAO DR2 (2025)

What can Euclid data (and  
its combination with current 
probes) tell us about this?

w(a) = w0 + wa(1 − a)

Perform forecast assuming the 
bestfit  model hinted 
by DESI + CMB + SNIa with SBI 

w0waCDM

GOAL

NOTE: -dark energy is recovered at Λ (w0, wa) = (−1,0)

https://arxiv.org/abs/2503.14738
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Forecast w0waCDM posteriors
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Forecast w0waCDM posteriors

Euclid 3x2pt alone could detect the fid. 
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Forecast w0waCDM posteriors

Euclid 3x2pt alone could detect the fid. 
 model at the  levelw0waCDM ∼ 5σ

The combination with Planck+DESI 
data would rise the detection to  ∼ 7σ
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Excellent agreement with MCMC
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evaluations thanks to  
reuse of simulations!
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Summary

Euclid's view of the Perseus cluster of galaxies

THANK YOU!
g.francoabellan@uva.nl

New trick to construct an effective simulator for any 
explicit likelihood with samples from previous MCMC 

Combined full Planck CMB likelihoods + simulator 
for an Euclid-like survey, and tested dynamical dark 
energy  huge reduction in number of simulations⟶

Euclid 3x2pt data alone can detect w0waCDM model 
preferred by DESI+CMB+SNIa at ~5σ 

Some explicit likelihoods (e.g. Planck) cannot easily be 
reformulated as simulators, hindering its SBI integration 
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BACK-UP
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Strategy: train a neural network                             as a binary classifier, 
so that

dϕ(x, θ) ∈ [0,1]

(x, θ) ∼ p(x, θ) = p(x |θ)p(θ)

(x, θ) ∼ p(x)p(θ)

dϕ(x, θ) ≃ 1

dϕ(x, θ) ≃ 0

if

if

Note: Φ denotes all the network parameters
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We have to minimise a loss function w.r.t. the network params. Φ

L[dϕ(x, θ)] = − ∫ dxdθ [p(x, θ)ln(dϕ(x, θ)) + p(x)p(θ)ln(1 − dϕ(x, θ))]

which yields

dϕ(x, θ) ≃
p(x, θ)

p(x, θ) + p(x)p(θ)
=

r(x; θ)
r(x; θ) + 1
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Does MNRE perform well with highly non-Gaussian posteriors?

As an example, we test a model of CDM decaying to DR + WDM  
(proposed to explain the S8 tension)

e−Γtχ

γ′ 

ψ

Decay rate Γ
WDM velocity kick vk

[Abellán et al. (2021)]
[Bucko et al. (2023)]

https://arxiv.org/abs/2307.03222
https://arxiv.org/abs/2102.12498
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Forecast constraints  
on decaying DM

Improve current limits by 
~1 order of magnitude!

MNRE & MCMC in 
good agreement 

3 hours 
     vs. 
8 days!
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Coverage test for Planck + 3x2pt (ΛCDM)

Empirical coverage and confidence level 
match to very good precision

0 1 2 3

Nominal credibility (zp)

0

1

2

3

4

E
m

p
ir
ic

al
co

ve
ra

ge
(z

p
)

79.53

68.27

98.60

95.45

99.80

99.73

H0

0 1 2 3

Nominal credibility (zp)

71.98

68.27

96.60

95.45

99.60

99.73

100!b

0 1 2 3

Nominal credibility (zp)

78.47

68.27

98.80

95.45

!cdm

0 1 2 3

Nominal credibility (zp)

73.18

68.27

96.52

95.45

99.60

99.73

ns

0 1 2 3

Nominal credibility (zp)

73.38

68.27

96.15

95.45

99.80

99.73

ln(1010As)


