Sequential simulation-based inference for cosmological initial conditions

Oleg Savchenko

Work with: Guillermo Franco Abellán, Florian List, Noemi Anau Montel, Christoph Weniger

EUROPEAN AI FOR FUNDAMENTAL PHYSICS CONFERENCE EuCAIFCon 2025

Large scale structure

https://mapoftheuniverse.net/

SDSS collaboration

Next decade

Picture credit: **A. Bayer**

How to analyse LSS data?

Figure 11: The triangle plot for cosmological and nuisance parameters of four independent BOSS datasets.

Classic approach:

- Come up with some summary statistic *s*(*data*)
- \bullet Develop theory predictions for ${\boldsymbol s}$
- Construct an analytic likelihood model (usually Gaussian)
- Use Bayes theorem and run MCMC:

$$p(\boldsymbol{z}|\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{z})}{p(\boldsymbol{x})}p(\boldsymbol{z})$$

Simulation-based inference

How to perform inference if all that you have is a forward simulator that can generate samples?

$$p(oldsymbol{z}|oldsymbol{x}) = rac{p(oldsymbol{x}|oldsymbol{z})}{p(oldsymbol{x})}p(oldsymbol{z}).$$

See review: **Cranmer**+, 1911.01429

- Neural Posterior Estimation
- Neural Likelihood Estimation
- Neural Ratio Estimation

Field-level inference

The whole field contains much more information than some summary like a power spectrum!

Initial conditions reconstruction

Very early universe had very simple properties!

→ feasible way to do field reconstruction is to infer these initial conditions 🙂

$$Pig(oldsymbol{\delta}^{ ext{IC}} \mid ig\{ N_i^g ig\} ig) = rac{Pig(oldsymbol{\delta}^{ ext{IC}} ig) Pig(ig\{ N_i^g ig\} \mid G_iig(oldsymbol{\delta}^{ ext{IC}} ig) ig)}{Pig(ig\{ N_i^g ig\} ig)}$$

 $oldsymbol{\delta}^{ ext{IC}}$ – initial density field $ig\{N^g_iig\}$ – galaxy catalog data

Hamiltonian Monte Carlo

- Most developed method so far
- Explicit likelihood
- Requires gradients from the simulator
- Computationally expensive

Samples produced with **Bayesian Origin Reconstruction from Galaxies (BORG)** algorithm

Training data: **2000** 128³ (1 *Gpc/h*)³ *Quijote* N-body simulations

Our setting

128³ resolution: ~**million**-dimensional parameter space!

- Want to explore the full posterior, not only get point estimates
- Want to keep things as simple as possible: model the likelihood as

$$p(\boldsymbol{x}|\boldsymbol{z}) \propto \exp\left\{-\frac{1}{2}(\boldsymbol{z} - \hat{\boldsymbol{z}}_{\boldsymbol{\theta}}(\boldsymbol{x}))^T \boldsymbol{Q}_{\boldsymbol{\theta}}^L(\boldsymbol{z} - \hat{\boldsymbol{z}}_{\boldsymbol{\theta}}(\boldsymbol{x}))
ight\}$$

• Trainable parts of the model: estimator $\mu_{MAP}(x)$ and **Q** matrix Fourier diagonal values

Training data

Apply a U-Net to estimate $\mu_{MAP}(x)$

Our approach

$$\mathcal{L} = \frac{1}{2} \sum_{i=1}^{N} \left\{ (\boldsymbol{z}_i - \hat{\boldsymbol{\mu}}_{\boldsymbol{\theta}}(\boldsymbol{x}_i))^T \boldsymbol{Q}_{\boldsymbol{\theta}} \left(\boldsymbol{z}_i - \hat{\boldsymbol{\mu}}_{\boldsymbol{\theta}}(\boldsymbol{x}_i) \right) \right\} - \frac{N}{2} \operatorname{tr} \log \boldsymbol{Q}_{\boldsymbol{\theta}}$$

and a Fourier-diagonal **Q** matrix

Super-fast sampling from a Gaussian

Convolution
Optimized and the second seco

map2map U-Net

Jamieson+, 2206.04594

Learn precision matrix and the embedding network simultaneously

Results

V = (1 *Gpc/h*)³ N_{grid}=128³

> 1.5 hrs of training on 1 GPU NVIDIA 40GB A100

10³ samples in < 3 s

Next steps

Moving to a more realistic setting:

- Survey effects: mask, spatially varying noise, etc.
- Varying cosmological parameters

Amortized vs sequential inference

- Fast inference for new \mathbf{x}_{obs}
- High simulation cost for training
- Can be not very precise

- Slow inference for new \mathbf{x}_{obs}
- Low simulation cost
- High precision

Animation credit: **N. Anau Montel**

Sequential inference in Falcon

- Framework for distributed
 computing on multiple nodes
- Training set evolves during training for sequential inference: new samples are drawn from the proposal distribution
- Some nodes **simulate**, some nodes train to do **inference**

Forward model

Code developed by F. List, O. Hahn et al.

Differentiable, highly-parallelisable particle-mesh simulator written in JAX.

Hierarchical model implemented in Falcon:

Seuential inference in Falcon

Why is this hard in high dimensions? Naïve way of tempering the likelihood fails

Raising likelihood to some power produces samples with incorrect summaries

Tempering the likelihood

- Need to have a **proposal** distribution
- Can temper the likelihood by adding more noise to the data

Tempering the likelihood

- Need to have a proposal distribution
- Can temper the likelihood by adding specific noise to the proposal data:

$$\boldsymbol{Q}_{\text{eff}} = \left(\boldsymbol{Q}^{P} + \gamma \, \boldsymbol{Q}_{\boldsymbol{\theta}}^{L}\right) \left[\boldsymbol{Q}^{P} + \left(2\gamma - \gamma^{2}\right) \boldsymbol{Q}_{\boldsymbol{\theta}}^{L}\right]^{-1} \left(\boldsymbol{Q}^{P} + \gamma \boldsymbol{Q}_{\boldsymbol{\theta}}^{L}\right)$$

Incomplete data

Field is constrained in the observed region and sampled from the prior in the unobserved region.

True initial

True final

19

Parameter inference

CNN trainable summary statistic

$$p(\boldsymbol{\delta}_{\mathrm{IC}}, \boldsymbol{\theta} | \boldsymbol{\delta}_{\mathrm{obs}}) = p(\boldsymbol{\delta}_{\mathrm{IC}} | \boldsymbol{\theta}, \boldsymbol{\delta}_{\mathrm{obs}}) \times p(\boldsymbol{\theta} | \boldsymbol{\delta}_{\mathrm{obs}})$$

Summary

- Reconstruction of cosmological **initial conditions** is an important problem that allows to **analise LSS data in the fullest way**
- Falcon framework allows for powerful distributed computing applications for active learning
- **Tempering the likelihood** in high dimensions can be done by adding a specific amount of additional noise to the proposal
- Mowing towards realistic settings (incomplete data, varying cosmology) requiers sequential SBI

BACK UP SLIDES

Cosmological simulations

Types:

• LPT

COLA

- N-body
- Hydrodynamical
- Particle mesh

Quijote

https://quijote-simulations.readthedocs.io/

Field-level inference

Leclercq+, 2103.04158

The whole field contains much more information than some summary like a power spectrum!

 $\langle \delta_{\rm m}(\mathbf{k})\delta_{\rm m}(\mathbf{k}')\rangle = (2\pi)^3 \delta_{\rm D}^3(\mathbf{k}+\mathbf{k}')P_{\rm mm}(k)$

Ongoing debate

Different results from different groups!

ML approaches

• **Point estimates**: train a neural net to give single deterministic prediction (e.g. via MSE loss)

Flöss+, 2305.07018

Diffusion models

- Train a network to approximate the score: $\nabla_x \log p(x|y)$
- Generate samples via reverse-diffusion process.

24 hrs of training on 4 80GB NVIDIA A100 GPU's

Flow-based models (stochastic interpolants)

- Train a network to approximate the **flow** velocity field
- Velocity field then stochastically transforms the samples

3 days of training on an 80GB NVIDIA A100 GPU, sampling in minutes

Cuesta-Lazaro+, NeurIPS 2024

(a) Posteriors over cosmological parameters obtained through Stochastic Interpolants and HMC in a random test simulation. The true value is highlighted with dashed lines.

Summary statistics comparison

1-2% agreement in the power spectrum

Coverage test shows that samples follow the correct distribution

Knowledge of the $Q(|\mathbf{k}|)$ dependence allows to turn any point estimator into a fast sampler

Incomplete data

$$oldsymbol{Q}^L_{oldsymbol{ heta}} = \mathcal{F}^\dagger oldsymbol{D}^L_{oldsymbol{ heta}} \mathcal{F} \quad \Rightarrow \quad oldsymbol{Q}^L_{oldsymbol{ heta}} = \mathcal{P} \mathcal{F}^\dagger oldsymbol{D}^L_{oldsymbol{ heta}} \mathcal{F} \mathcal{P}$$

Use Conjugate Gradient to estimate tr log Q:

$$\mathcal{L} = \frac{1}{2} \sum_{i=1}^{N} \left\{ (\boldsymbol{z}_{i} - \hat{\boldsymbol{\mu}}_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}))^{T} \boldsymbol{Q}_{\boldsymbol{\theta}} \left(\boldsymbol{z}_{i} - \hat{\boldsymbol{\mu}}_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}) \right) \right\} - \frac{N}{2} \operatorname{tr} \log \boldsymbol{Q}_{\boldsymbol{\theta}}$$

• Then sampling requires GEDA

Sequential inference & adaptive learning

- Our parameter space is too vast to explore
- Want to 'zoom in' into it and obtain precise results with a low number of simulations

Figures credit: N. Anau Montel

Parameter inference applied to Euclid

Apply **Marginal Neural Ratio Estimation** algorithm via **swyft** code to pre-compressed **3x2pt statistics**

G.F. Abellán+, 2403.14750

Excellent agreement with MCMC and a dramatic reduction in CPU time