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Sequential simulation-based inference for 
cosmological initial conditions



Large scale structure
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https://mapoftheuniverse.net/ SDSS collaboration

https://mapoftheuniverse.net/
https://mapoftheuniverse.net/
https://mapoftheuniverse.net/
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Next decade

Picture credit: A. Bayer



Classic approach:

• Come up with some summary 
statistic s(data)

• Develop theory predictions for s 

• Construct an analytic likelihood 
model (usually Gaussian)

• Use Bayes theorem and run MCMC:
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Ivanov+, 
1909.05277

How to analyse LSS data?



Simulation-based inference

How to perform inference if all that you have is a forward 
simulator that can generate samples?

Picture credit: 

Deistler+, 2210.04815 
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See review:    
Cranmer+, 1911.01429 

• Neural Posterior Estimation

• Neural Likelihood Estimation

• Neural Ratio Estimation



Field-level inference
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The whole field contains much 
more information than some 

summary like a power spectrum!



Very early universe had very 
simple properties!

→ feasible way to do field 
reconstruction is to infer these 

initial conditions 

Initial conditions reconstruction

Gaussian initial conditions

z = 1000

z = 0

- initial density field

- galaxy catalog data
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Hamiltonian Monte Carlo

• Most developed method 
so far

• Explicit likelihood

• Requires gradients from 
the simulator

• Computationally 
expensive

8

Samples produced with Bayesian Origin 
Reconstruction from Galaxies (BORG) algorithm

Jasche+, 1203.3639, 1806.11117



Our setting

1283 resolution: ∼million-dimensional parameter 

space!

• Want to explore the full posterior, not only get point 

estimates

• Want to keep things as simple as possible: model 

the likelihood as

• Trainable parts of the model: estimator 𝝁MAP(x) and 

Q matrix Fourier diagonal valuesTraining data: 2000 
1283 (1 Gpc/h)3 Quijote 

N-body simulations 9

OS+, 2502.03139

https://arxiv.org/abs/2502.03139
https://arxiv.org/abs/2502.03139


Our approach

map2map U-Net

Jamieson+, 2206.04594

Train the model with a simple 
MAP loss function
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Apply a U-Net to 
estimate 𝝁MAP(x)

Learn precision matrix 
and the embedding 

network simultaneously

Super-fast sampling 
from a Gaussian

and a Fourier-diagonal Q matrix

Training data

OS+, 2502.03139

https://arxiv.org/abs/2502.03139
https://arxiv.org/abs/2502.03139


1.5 hrs of 

training

on 1 GPU
NVIDIA 40GB A100

V = (1 Gpc/h)3

Ngrid=1283
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True

Inferred

Results
OS+, 2502.03139

103 samples 

in < 3 s

https://arxiv.org/abs/2502.03139
https://arxiv.org/abs/2502.03139


Next steps
Moving to a more realistic setting:

• Survey effects: mask, spatially varying noise, etc.

• Varying cosmological parameters 
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Amortized     vs    sequential 
inference

• Slow inference for new xobs

• Low simulation cost

• High precision

• Fast inference for new xobs

• High simulation cost for training

• Can be not very precise

Round 1

…

Round 2 Round 6

Animation credit: 

N. Anau Montel

Cole+, 2111.08030
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Sequential inference in Falcon

• Framework for distributed 

computing on multiple nodes

• Training set evolves during 

training for sequential inference: 

new samples are drawn from the 

proposal distribution

• Some nodes simulate, some 

nodes train to do inference

Diagram credit: 

C. Weniger 14



Forward model

Differentiable, highly-parallelisable particle-mesh simulator 
written in JAX. 

Hierarchical model implemented in Falcon:

Ω 𝑝(𝑘) 𝛅𝑖𝑐 𝛅𝑓 𝛅𝑜𝑏𝑠

Code developed by F. List, O. Hahn et al.
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Seuential inference in Falcon

Why is this hard in high 

dimensions? Naïve way of 

tempering the likelihood fails
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Raising likelihood to some 

power produces samples 

with incorrect summaries



Tempering the likelihood

• Need to have a proposal 

distribution

• Can temper the likelihood by 

adding more noise to the data
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VS



Tempering the likelihood

• Need to have a proposal distribution

• Can temper the likelihood by adding 

specific noise to the proposal data:
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Incomplete data
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Animation credit: 

A. Orban

Field is constrained in the observed 

region and sampled from the prior 

in the unobserved region.



Parameter inference

CNN trainable summary statistic
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Summary
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• Reconstruction of cosmological initial conditions is an important 

problem that allows to analise LSS data in the fullest way

• Falcon framework allows for powerful distributed computing 

applications for active learning

• Tempering the likelihood in high dimensions can be done by 

adding a specific amount of additional noise to the proposal

• Mowing towards realistic settings (incomplete data, varying 

cosmology) requiers sequential SBI



BACK UP SLIDES



Cosmological simulations

Types:

• LPT

• COLA

• Particle mesh

https://camels.readthedocs.io/https://quijote-simulations.readthedocs.io/

Ω

Picture credit: 
Legin+, 2304.03788

• N-body

• Hydrodynamical
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https://camels.readthedocs.io/
https://camels.readthedocs.io/
https://camels.readthedocs.io/
https://quijote-simulations.readthedocs.io/
https://quijote-simulations.readthedocs.io/
https://quijote-simulations.readthedocs.io/
https://quijote-simulations.readthedocs.io/
https://quijote-simulations.readthedocs.io/


Field-level inference

The whole field contains much 
more information than some 

summary like a power spectrum!

Leclercq+, 2103.04158 
Lemos+, 2310.15256
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Ongoing debate
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Different results from different groups!



ML approaches
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• Point estimates: train a neural net to give single 
deterministic prediction (e.g. via MSE loss)

Jindal+, 2303.13056

Flöss+, 2305.07018



Diffusion models

• Train a network to approximate the 
score:                       

• Generate samples via reverse-diffusion 
process.

26

Legin+, 2304.03788

24 hrs of training on 4 80GB NVIDIA A100 GPU’s



Flow-based models 
(stochastic interpolants)

• Train a network to approximate the flow 
velocity field                       

• Velocity field then stochastically transforms 
the samples

Cuesta-Lazaro+, 
NeurIPS 2024

3 days of training on an 80GB NVIDIA A100 GPU, 
sampling in minutes
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Summary statistics comparison
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1-2% agreement in the 
power spectrum

Coverage test shows that samples follow the correct distribution

Knowledge of the Q(|k|) 
dependence allows to turn 
any point estimator into a 
fast sampler

OS+, 2502.03139

https://arxiv.org/abs/2502.03139
https://arxiv.org/abs/2502.03139


Incomplete data

• Modify QL matrix with real-space factors P:

• Use Conjugate Gradient to estimate tr log Q:

• Then sampling requires GEDA
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Learning with

high-precision

Target observation

Round 1

T
ra

in
in

g
 

d
a

ta

…

Round 2 Round 6

Truncated prior

𝑧~ ෤𝑝(𝑧)

Estimation

𝑝(𝑧|𝑥0)

Simulator

𝑥~𝑝(𝑥|𝑧)

Inference

𝑓𝜃(𝑥, 𝑧)

Observation

𝑥0

Prior

𝑧~𝑝(𝑧)

• Our parameter space is too vast to explore

• Want to ‘zoom in’ into it and obtain precise 
results with a low number of simulations

Sequential inference & 
adaptive learning

Figures credit: 

N. Anau Montel 30



Parameter inference applied to Euclid

31

G.F. Abellán+,  2403.14750

Excellent agreement with MCMC and 
a dramatic reduction in CPU time

Apply Marginal Neural Ratio Estimation algorithm 
via swyft code to pre-compressed 3x2pt statistics 

https://arxiv.org/abs/2403.14750
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