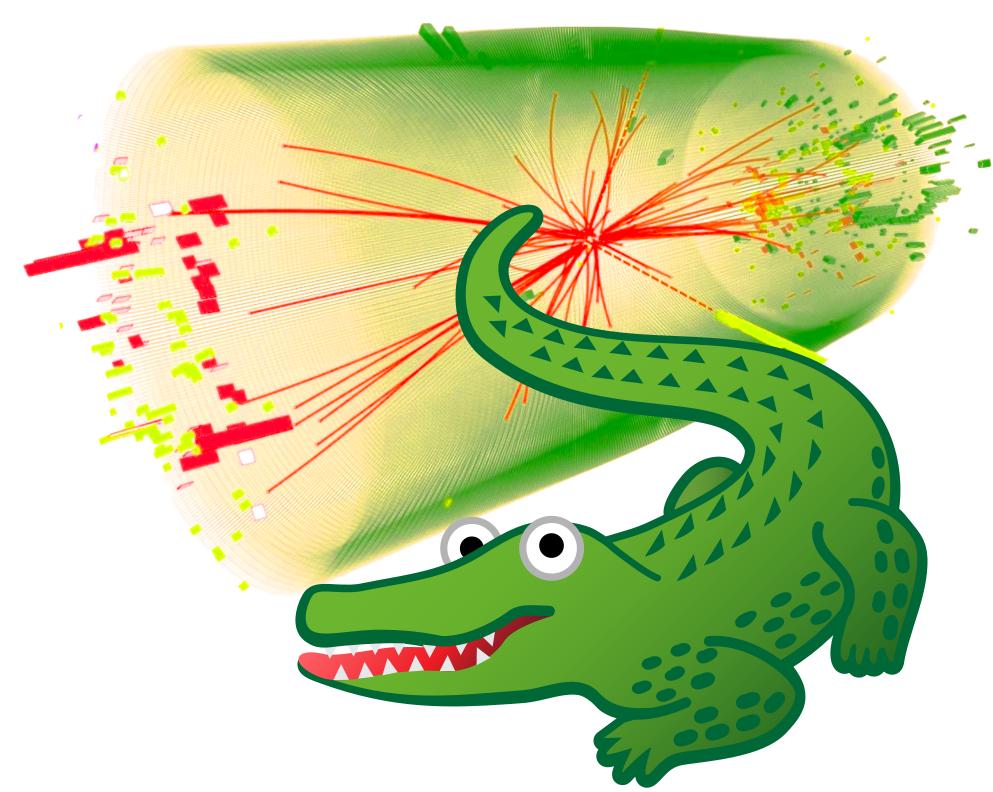
A Lorentz Equivariant Transformer for All of the LHC

Víctor Bresó Pla

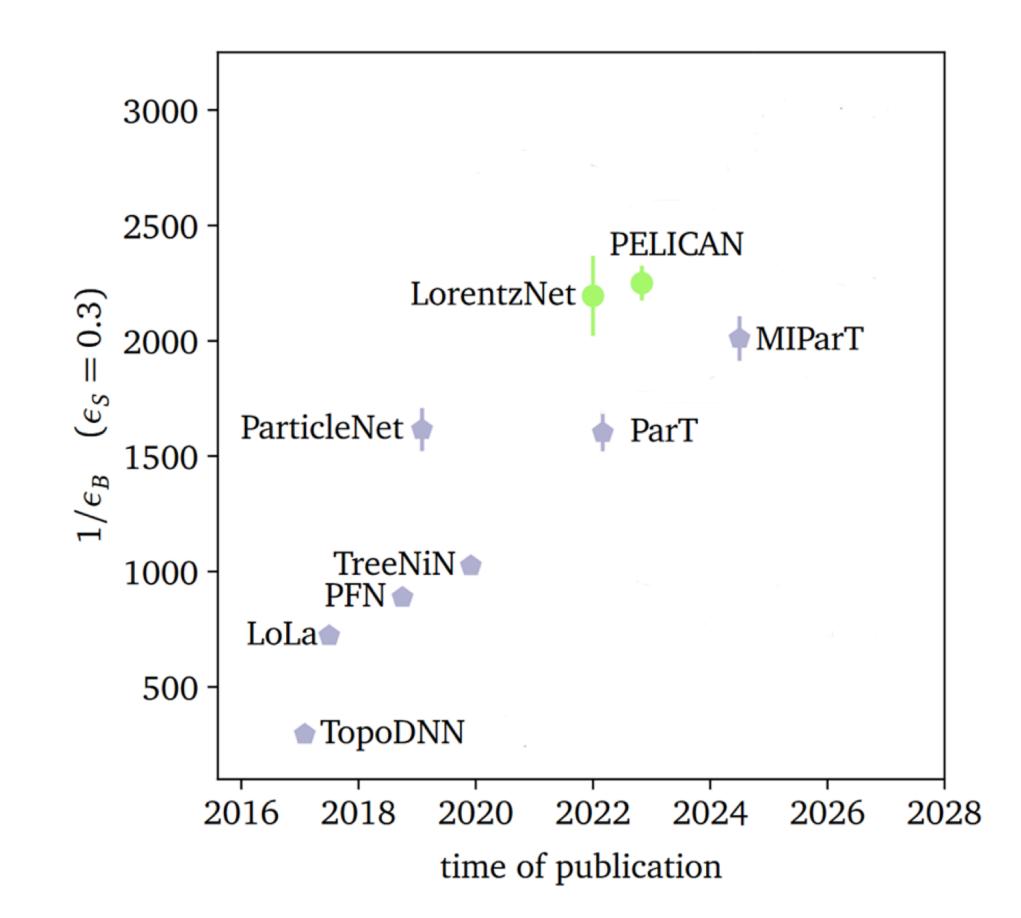
In collaboration with Jonas Spinner, Johann Brehmer, Pim de Haan, Tilman Plehn, Huilin Qu & Jesse Thaler

arXiv:2405.14806 [physics.data-an] arXiv:2411.00104 [hep-ph, hep-ex]

Public Igatr package repository

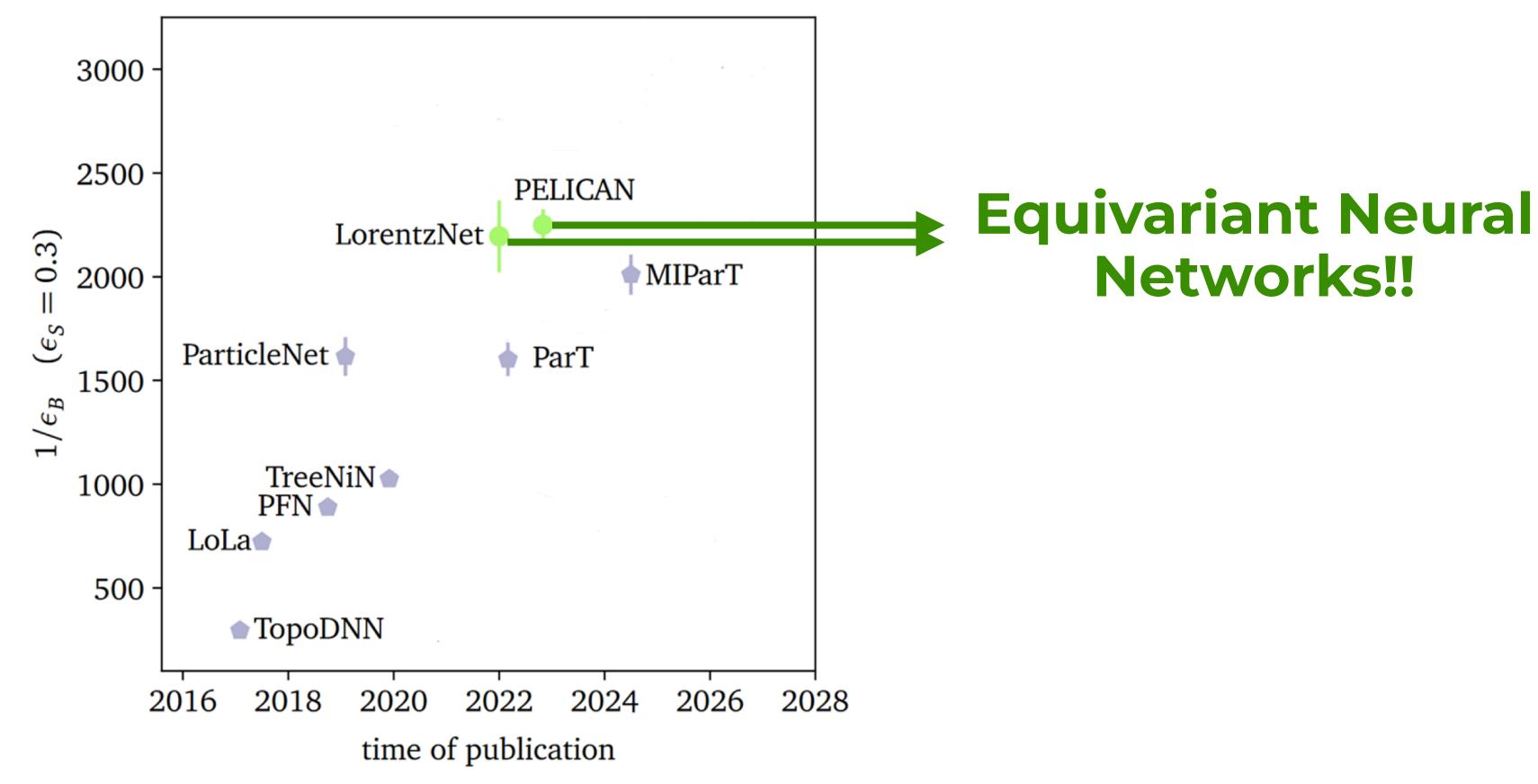


History of Top Tagging



A. Bogatskiy et al., 2211.00454 S. Gong et al., 2201.08187 D. Ruhe et al., 2305.11141

History of Top Tagging

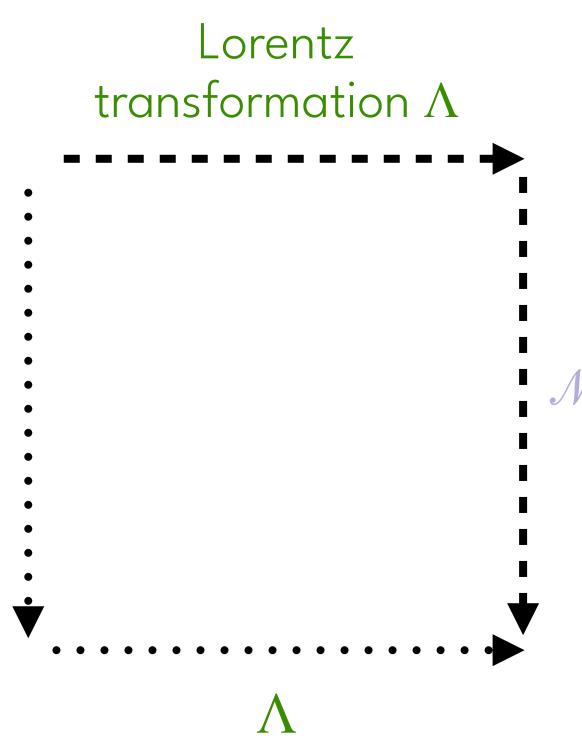


A. Bogatskiy et al., 2211.00454 S. Gong et al., 2201.08187 D. Ruhe et al., 2305.11141

What are equivariant neural networks?

What are equivariant neural networks?

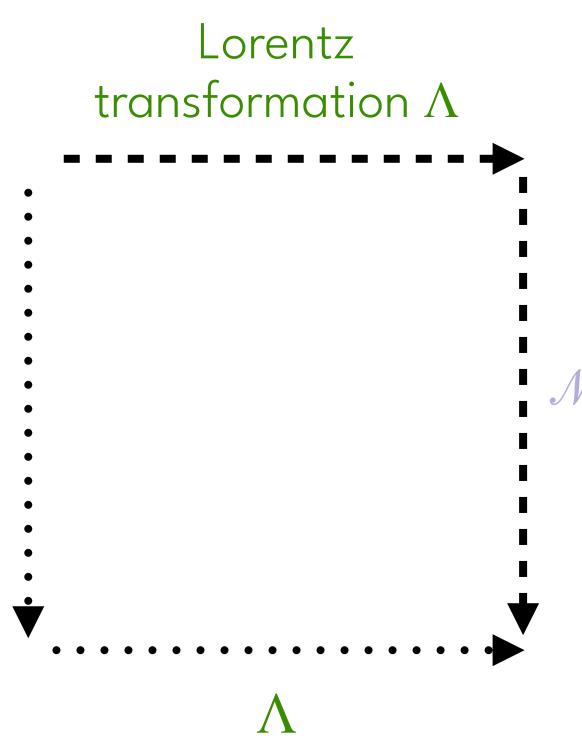
 $\mathcal{N}\left(\Lambda\left(x\right)\right) = \Lambda\left(\mathcal{N}\left(x\right)\right)$



What are equivariant neural networks?

 $\mathcal{N}\left(\Lambda\left(x\right)\right) = \Lambda\left(\mathcal{N}\left(x\right)\right)$

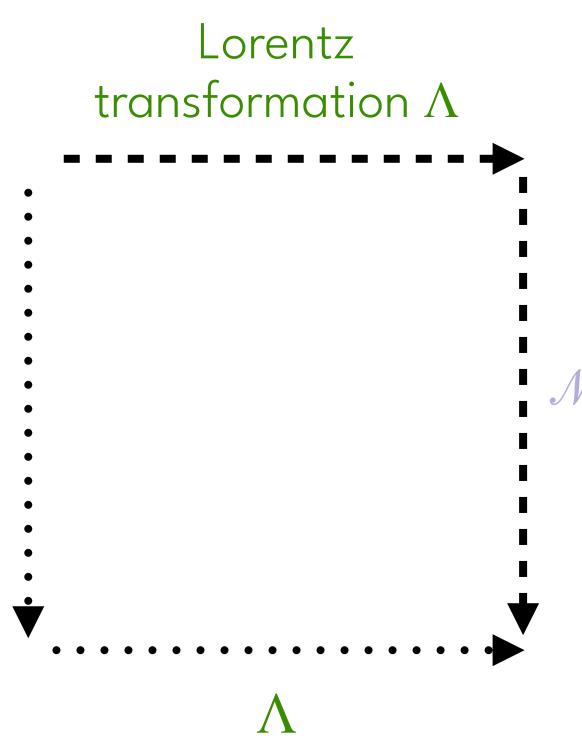
Why equivariance?



What are equivariant neural networks?

 $\mathcal{N}(\Lambda(x)) = \Lambda(\mathcal{N}(x))$

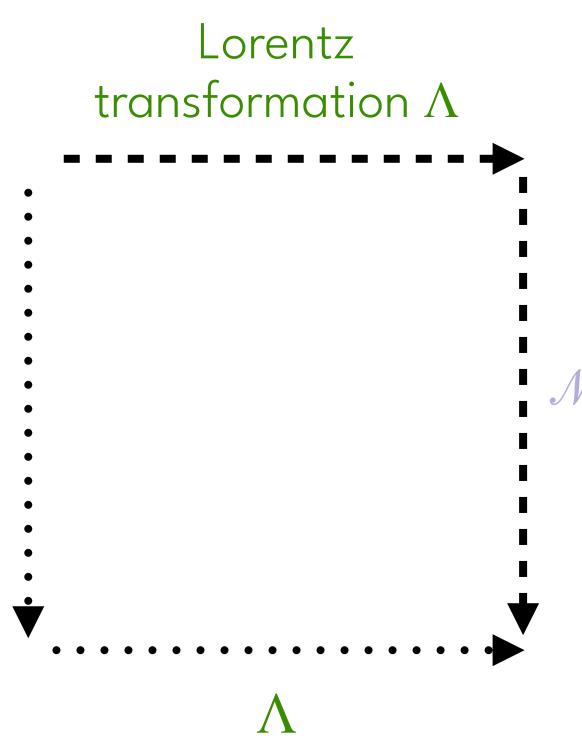
- Why equivariance?
- Symmetries are important



What are equivariant neural networks?

 $\mathcal{N}(\Lambda(x)) = \Lambda(\mathcal{N}(x))$

- Why equivariance?
- Symmetries are important
- Symmetries are hard to learn

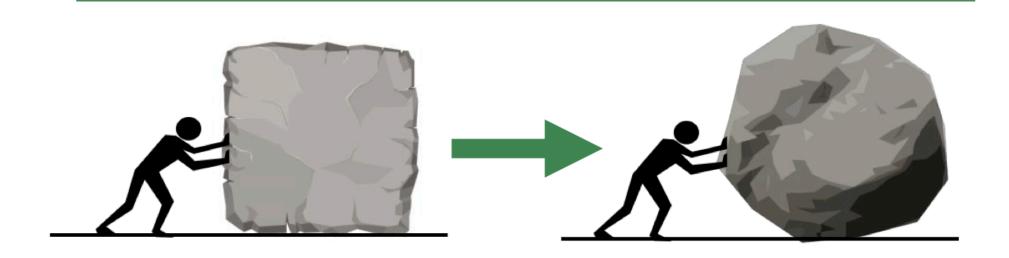


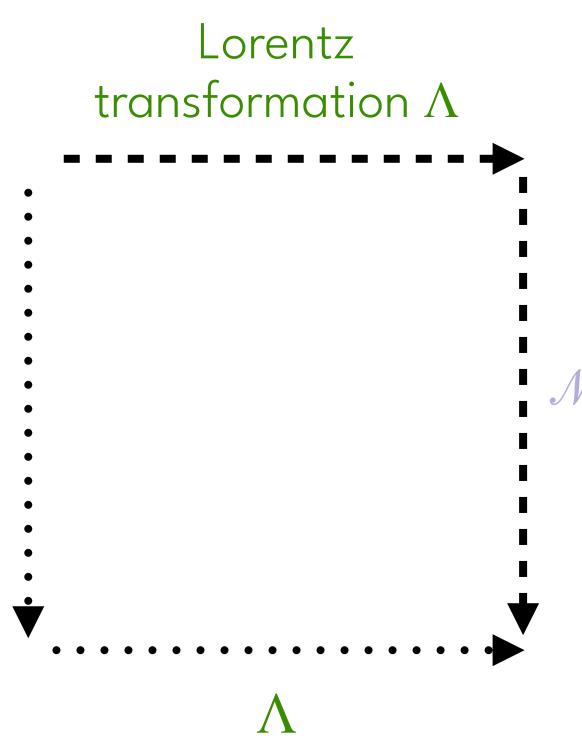
What are equivariant neural networks?

 $\mathcal{N}\left(\Lambda\left(x\right)\right) = \Lambda\left(\mathcal{N}\left(x\right)\right)$

Why equivariance?

- Symmetries are important
- Symmetries are hard to learn
- More efficient networks





Equivariant Neural Networks What are equivari $\mathcal{N}\left(\Lambda\left(x ight) ight) =\Lambda\left(\mathcal{N}\left(x ight) ight)$ What is our recipe? Why equivariance - Symmetries are i - Geometric Algebra - Symmetries are I - Transformer - More efficient ne

$\begin{array}{c} \text{Lorentz} \\ \text{transformation } \Lambda \end{array}$

- What is a **geometric algebra**?

- What is a **geometric algebra**?

Vector space 4 Geometric product

- What is a **geometric algebra**?

Vector space - Geometric product

- We work with the **spacetime algebra**, built from the Minkowski vector space

- What is a **geometric algebra**?

Vector space - Geometric product

- We work with the **spacetime algebra**, built from the Minkowski vector space

 $\{\gamma^{\mu},\gamma^{\prime}\}$

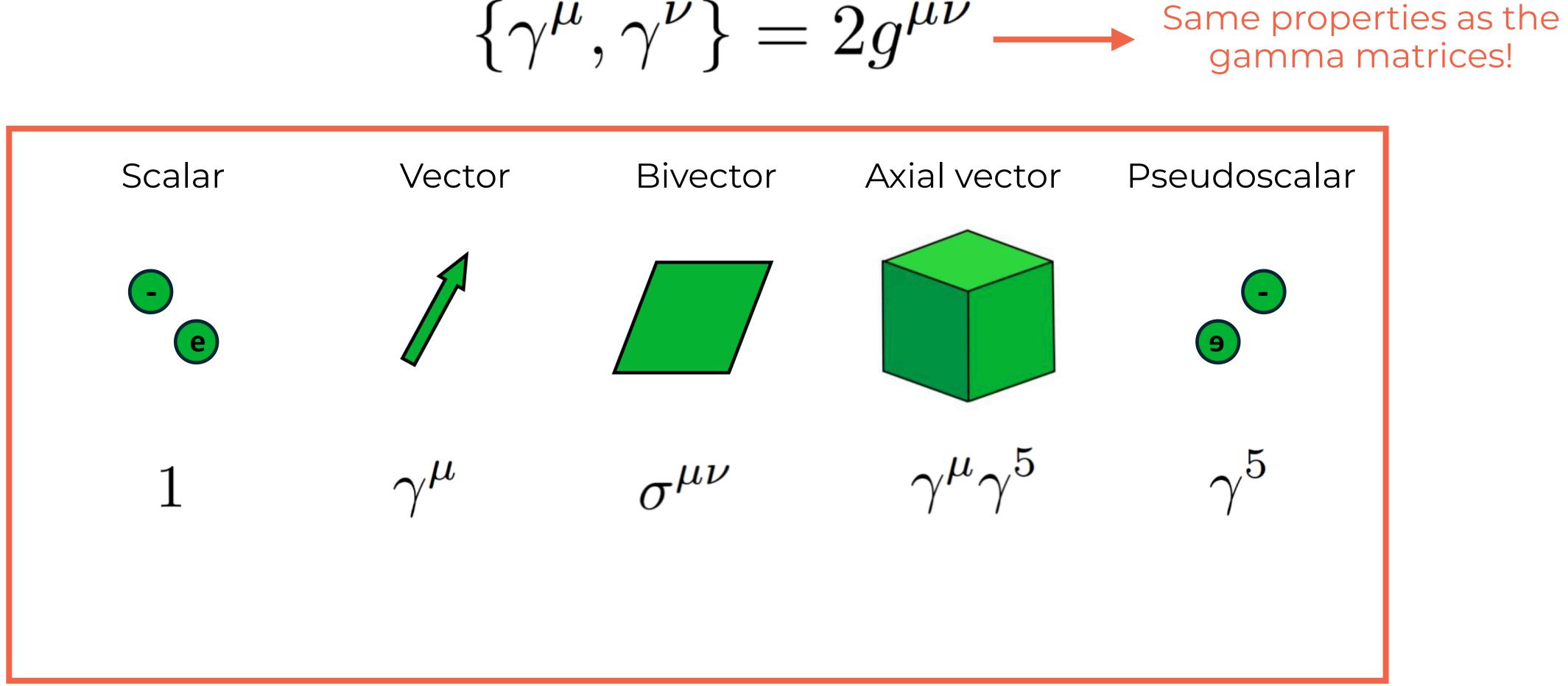
$$^{\nu}\} = 2g^{\mu\nu}$$

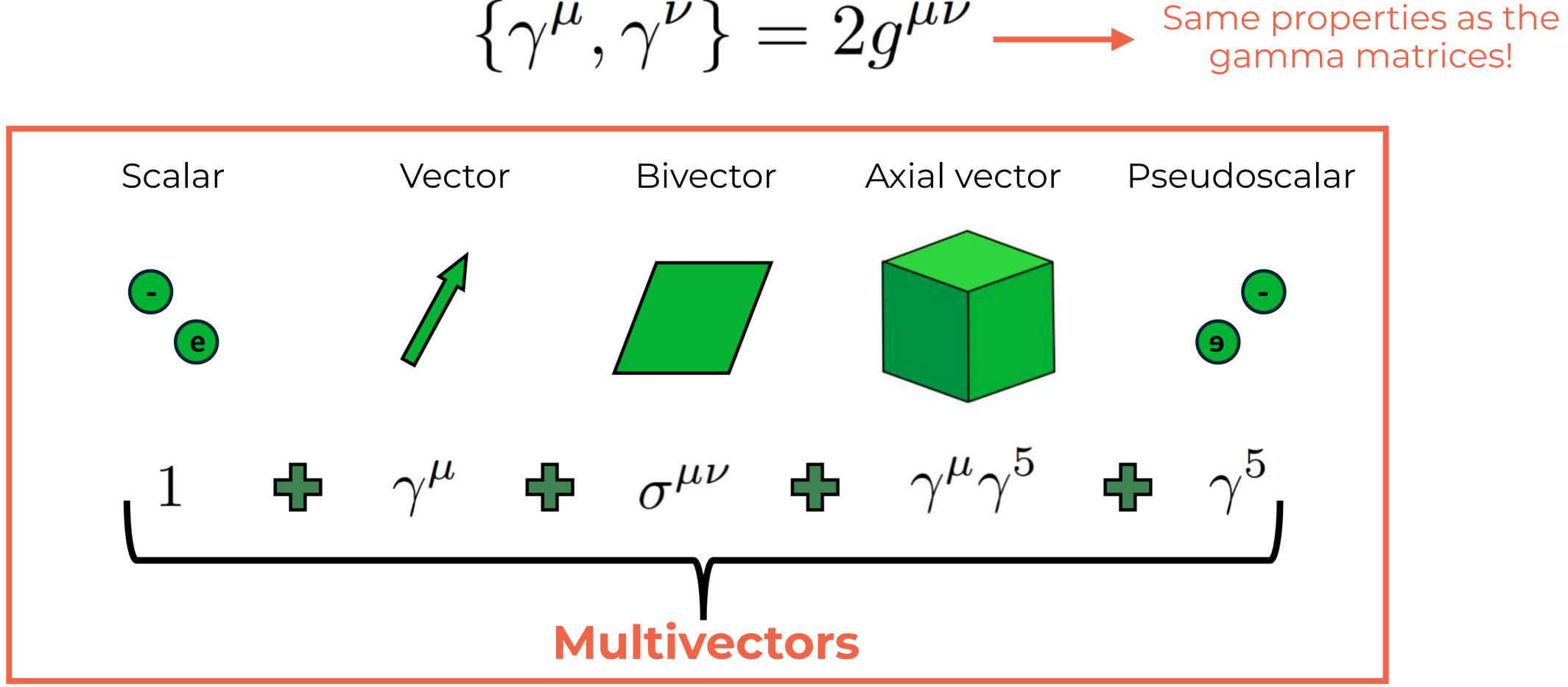
- What is a **geometric algebra**?

Vector space - Geometric product

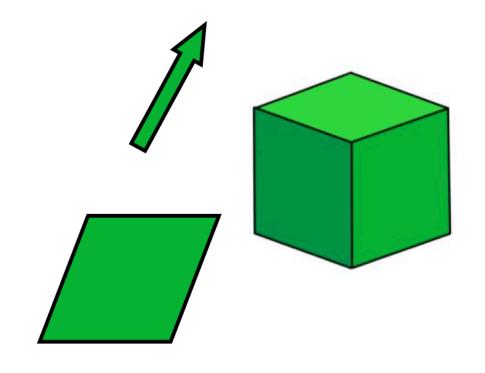
- We work with the **spacetime algebra**, built from the Minkowski vector space



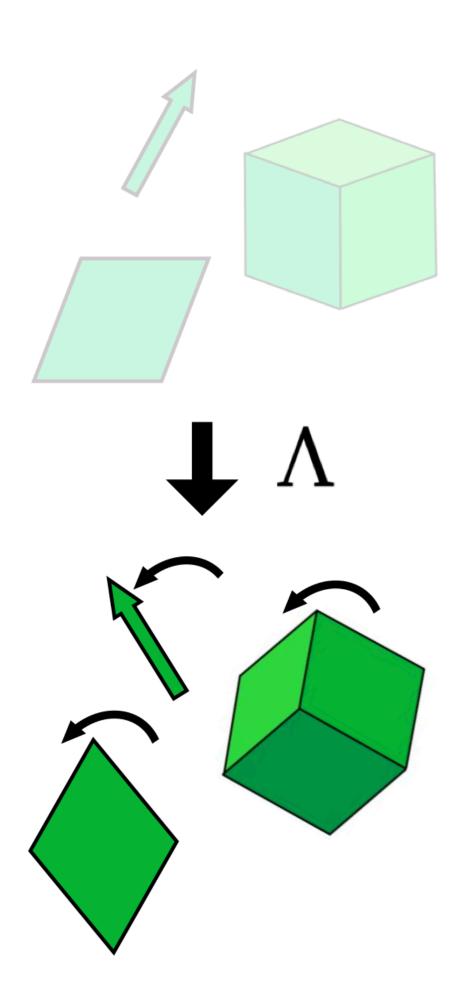




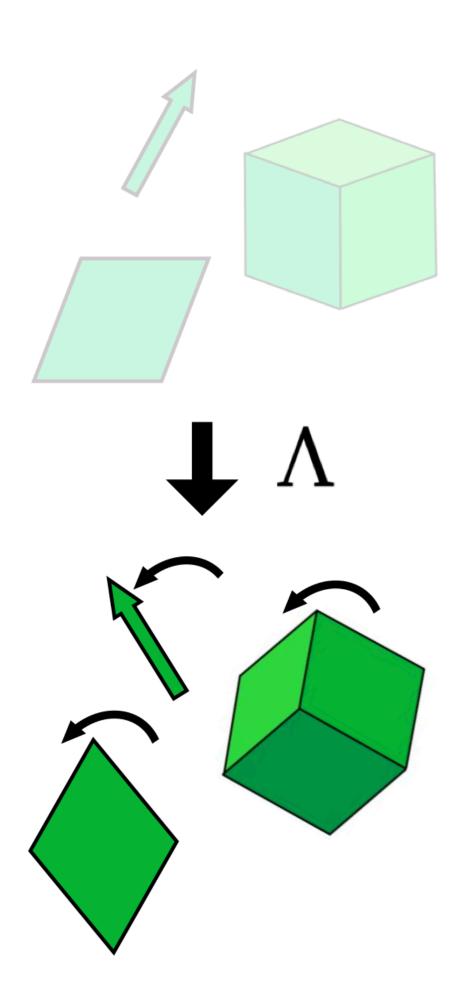
- Lorentz transformations:



- Lorentz transformations:

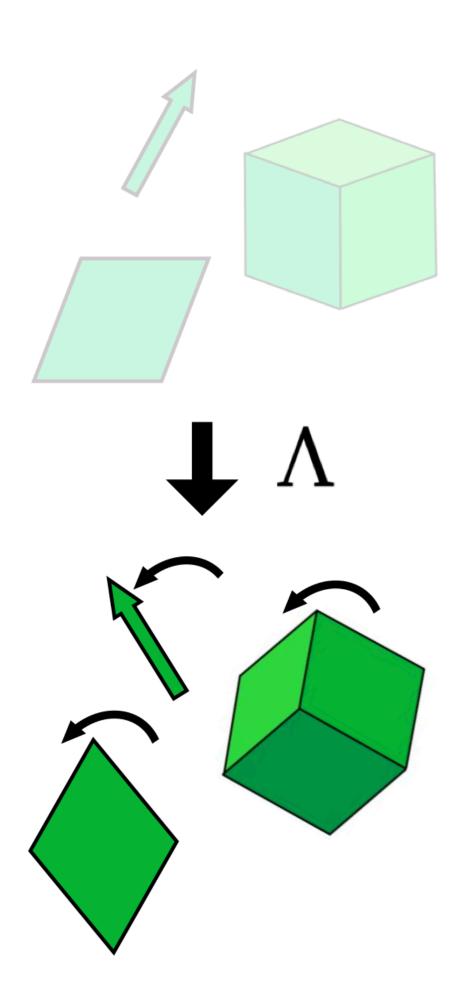


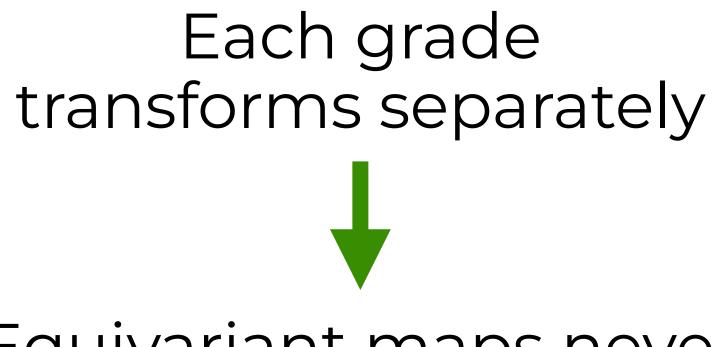
- Lorentz transformations:



Each grade transforms separately

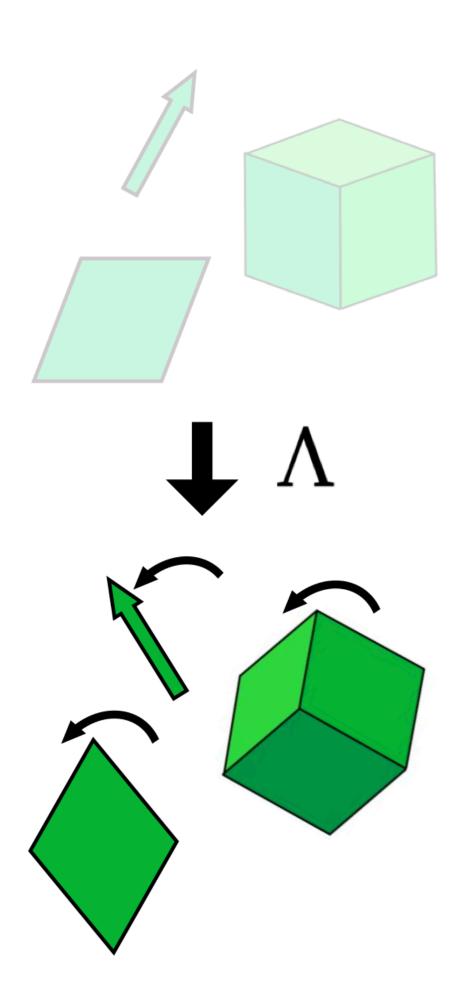
- Lorentz transformations:

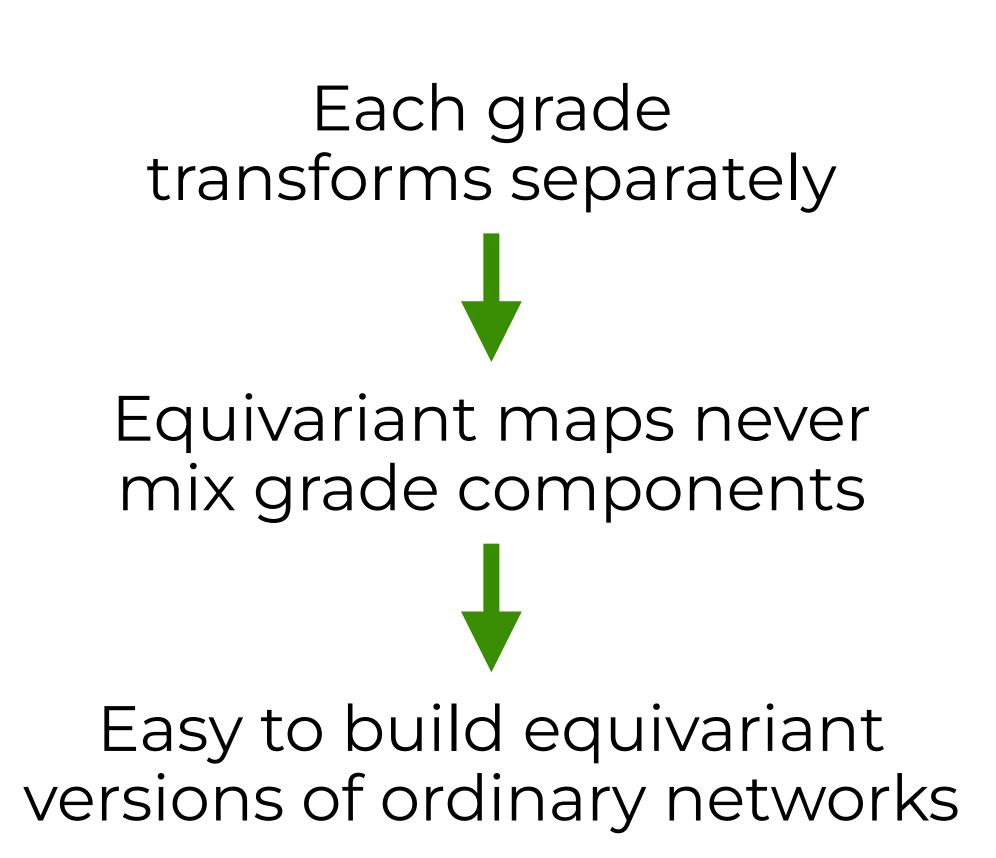




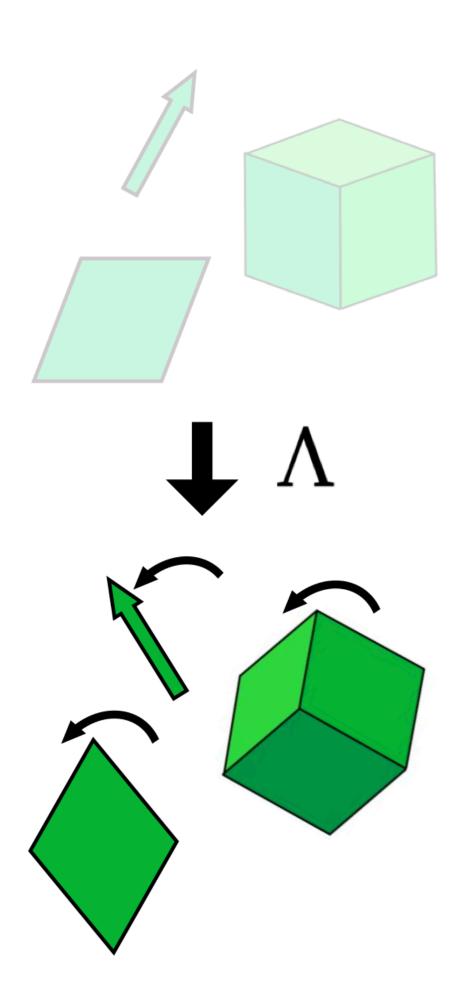
Equivariant maps never mix grade components

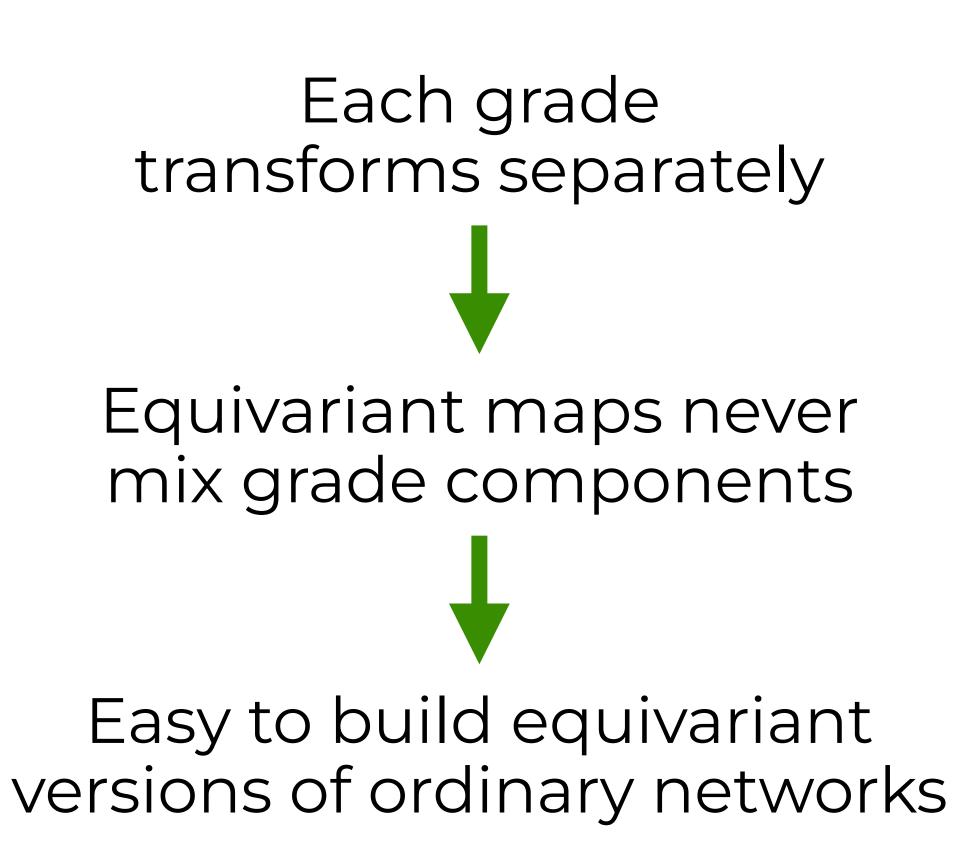
- Lorentz transformations:



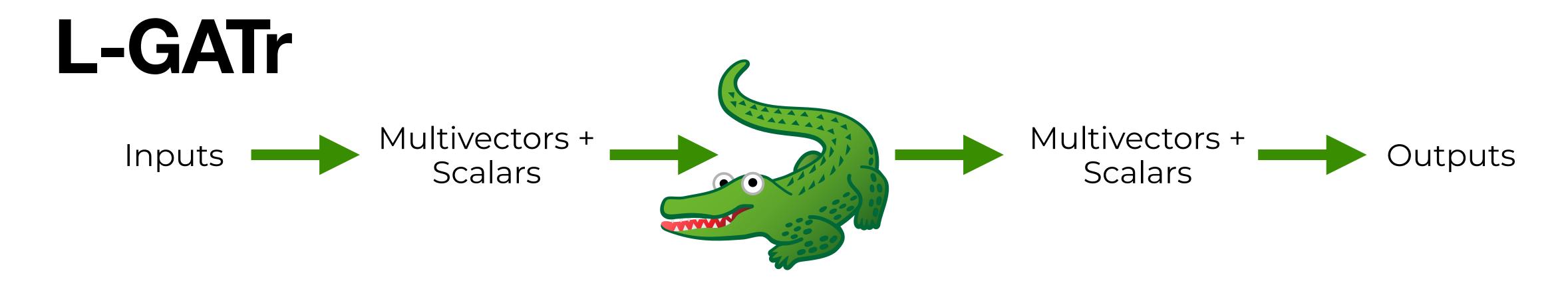


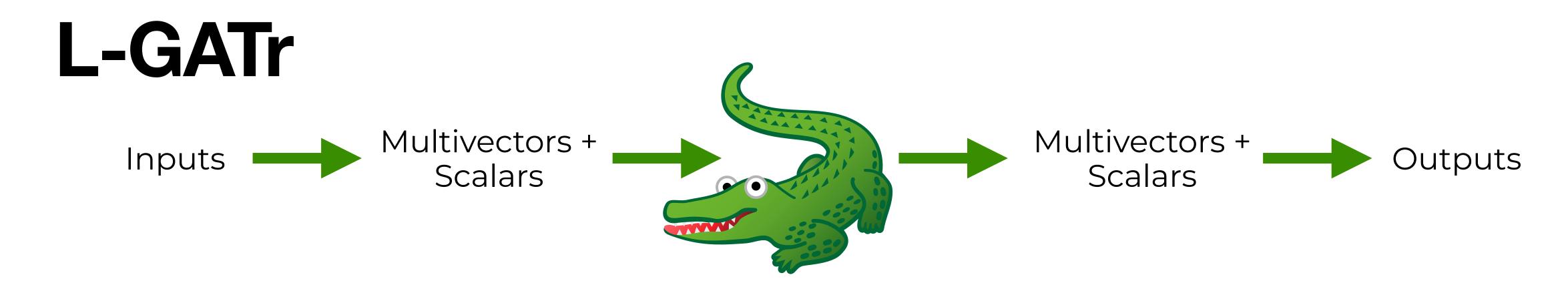
- Lorentz transformations:

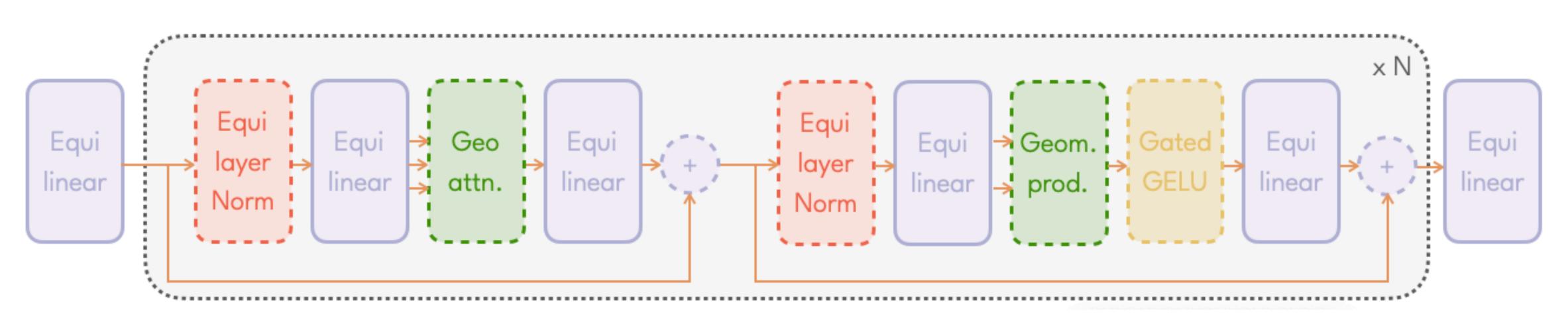


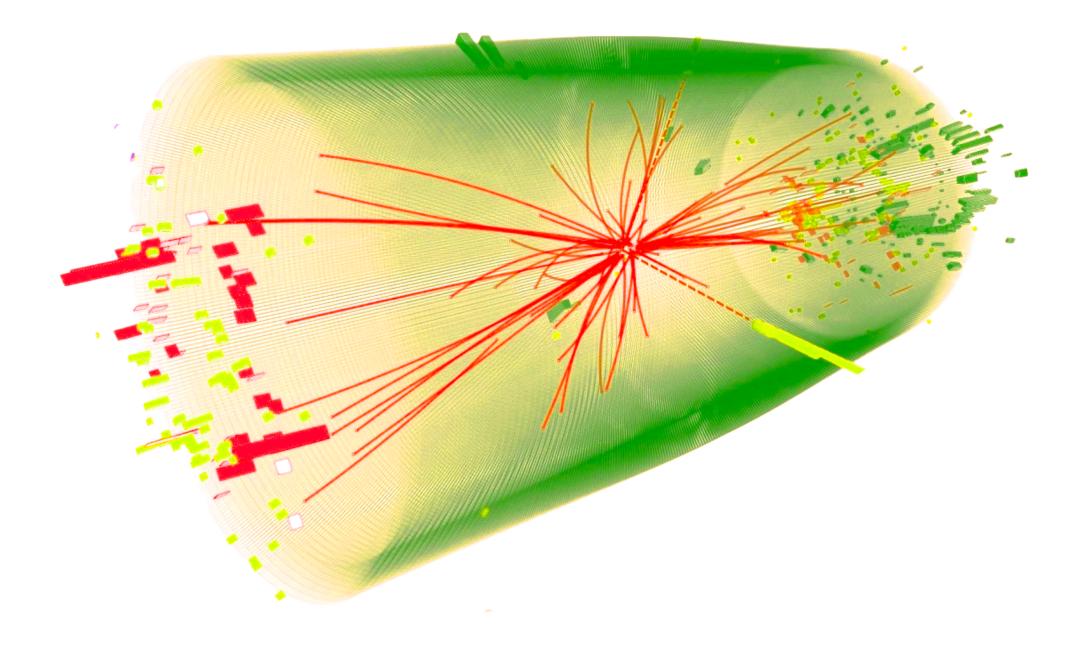


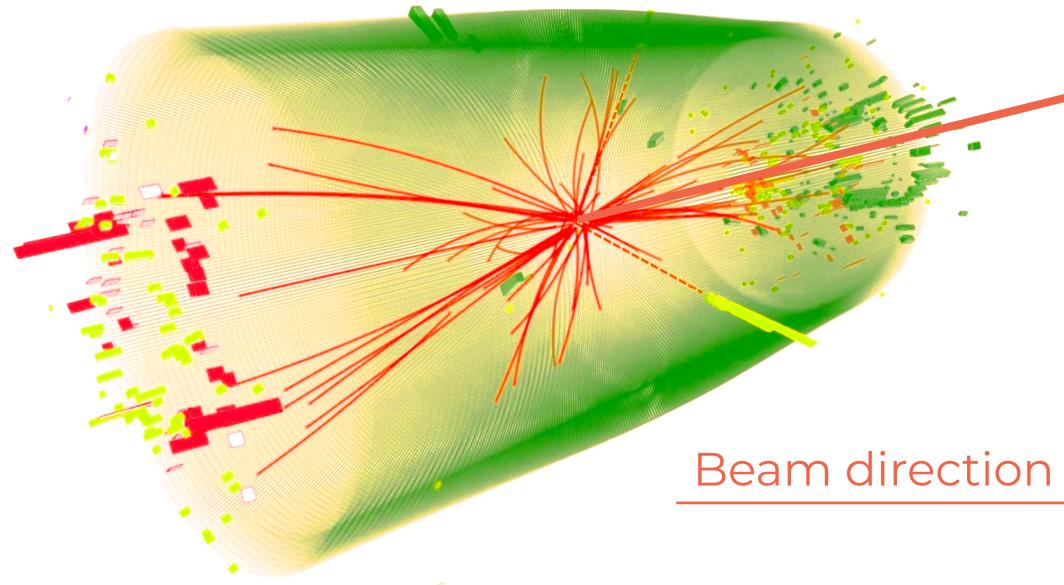
Lorentz Equivariance + Geometric Algebra + Transformer = **L-GATr**

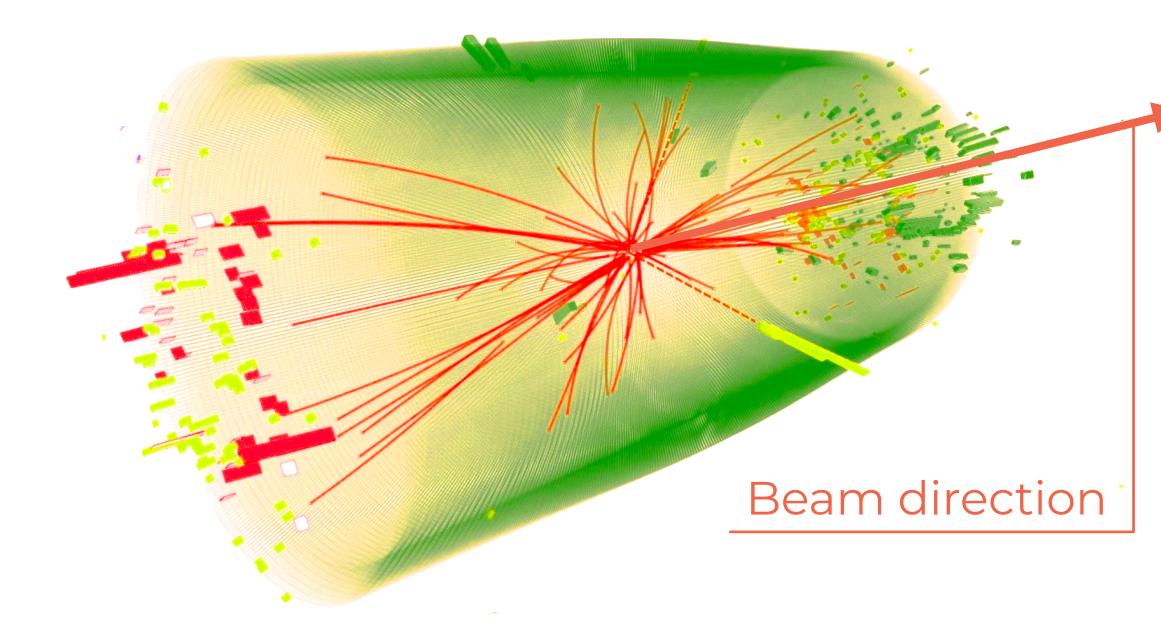




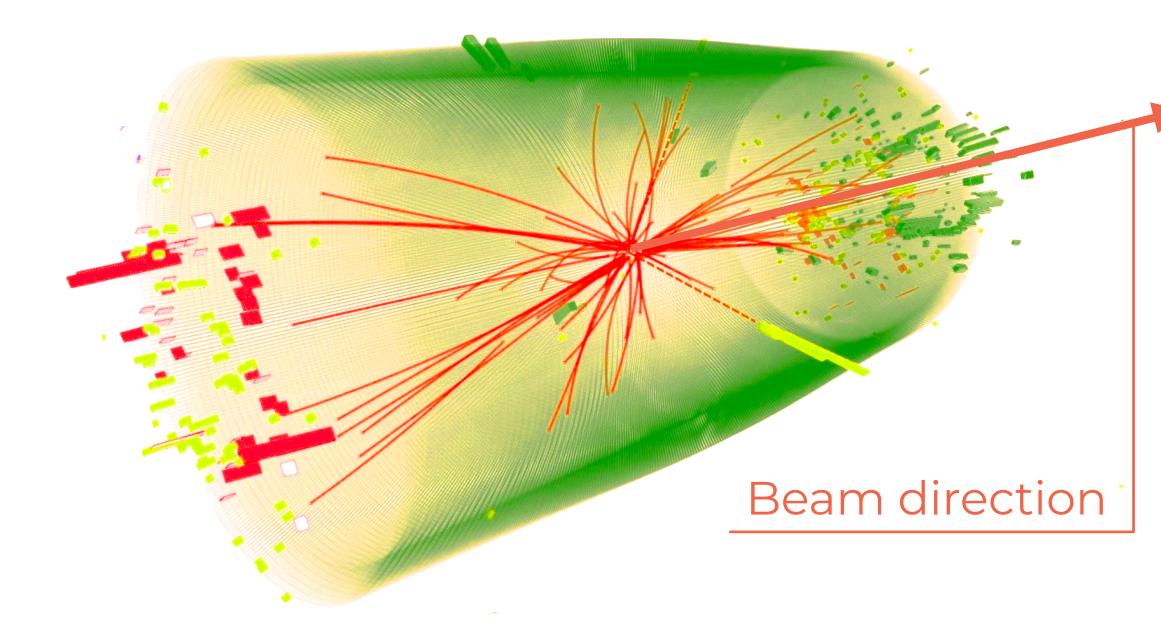








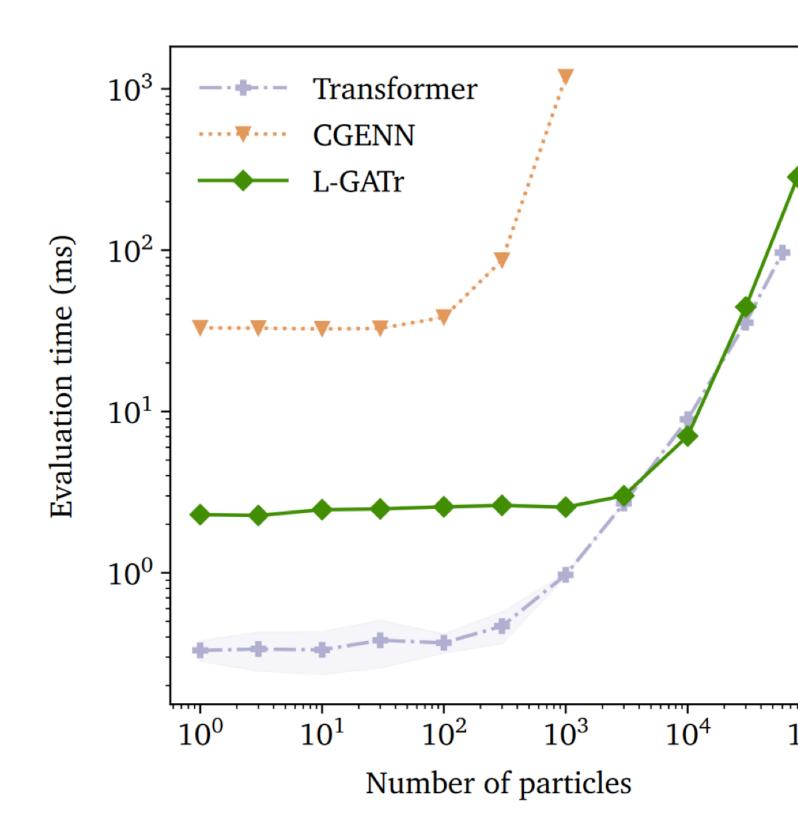
- Beam reference: $(1, 0, 0, \pm 1)$ $SO(1, 3) \rightarrow \begin{array}{l} \text{Boosts + rotations} \\ \text{around the beam} \end{array}$

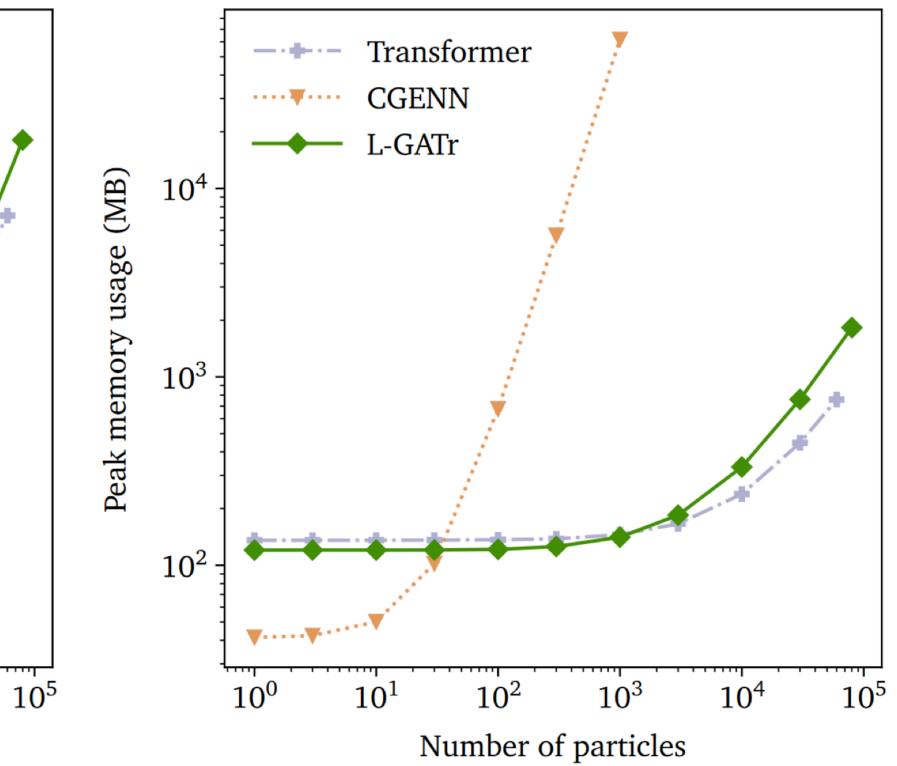


- Beam reference: $(1, 0, 0, \pm 1)$ $SO(1, 3) \rightarrow \begin{array}{l} \text{Boosts + rotations} \\ \text{around the beam} \end{array}$

Beam	Time	Embedding	$1/\epsilon_B \ (\epsilon_S = 0.3)$
	×	Particle	1422
Spacelike	×	Particle	1905
All planes	\checkmark	Particle	2009
	\checkmark	Token	1923
xy plane	\checkmark	Channel	2060
Spacelike	\checkmark	Particle	2152
$\operatorname{Lightlike}$	\checkmark	Particle	2114
xy plane	\checkmark	Particle	2240

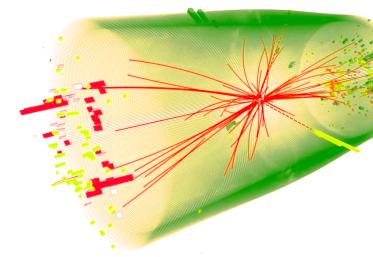
Key feature: Transformer scaling





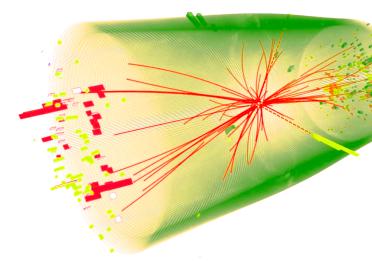
Top Tagging

Network	Accuracy	AUC	$1/\epsilon_B~(\epsilon_S=0.5)$	$1/\epsilon_B \ (\epsilon_S = 0.3)$
TopoDNN [52]	0.916	0.972	_	295 ± 5
LoLa [9]	0.929	0.980	_	722 ± 17
N-subjettiness [53]	0.929	0.981	_	867 ± 15
PFN [54]	0.932	0.9819	247 ± 3	888 ± 17
TreeNiN [55]	0.933	0.982	_	1025 ± 11
ParticleNet [56]	0.940	0.9858	397 ± 7	1615 ± 93
ParT [57]	0.940	0.9858	413 ± 16	1602 ± 81
MIParT [58]	0.942	0.9868	505 ± 8	2010 ± 97
LorentzNet* [10]	0.942	0.9868	498 ± 18	2195 ± 173
CGENN* [12]	0.942	0.9869	500	2172
PELICAN* [40]	0.9426 ± 0.0002	0.9870 ± 0.0001	_	2250 ± 75
L-GATr* [33]	0.9423 ± 0.0002	0.9870 ± 0.0001	540 ± 20	2240 ± 70



JetClass Tagging

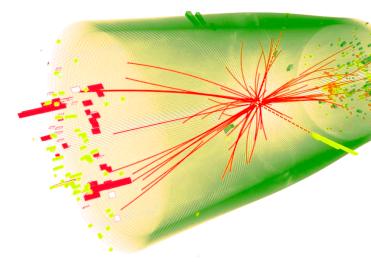
- Large and comprehensive jet dataset
- 100M events
- 10 classes



JetClass Tagging

- Large and comprehensive jet dataset
- 100M events
- 10 classes

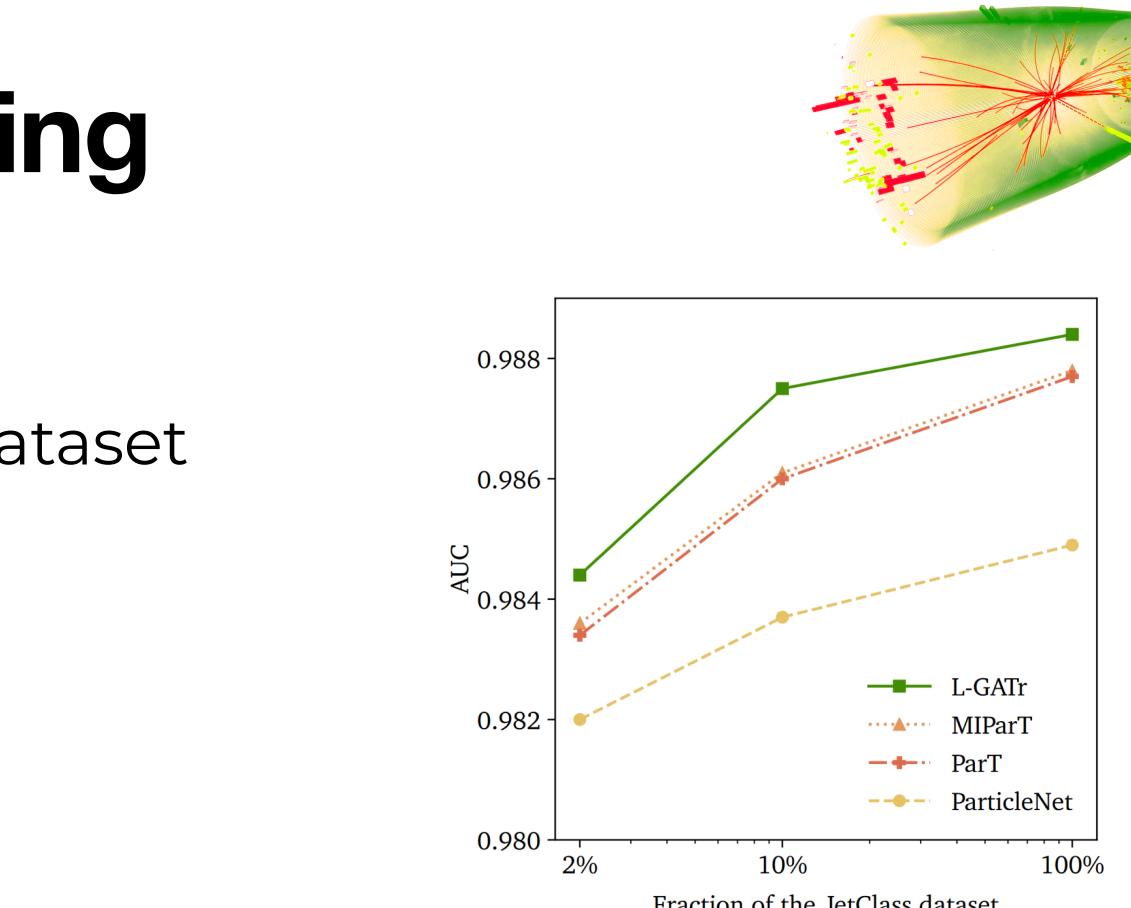
	All cla Accuracy			$H \rightarrow c\bar{c}$ Rej _{50%}		$H \rightarrow 4q$ Rej _{50%}	H → l vqą̄′ Rej _{99%}		t → bl v Rej _{99.5%}		$Z \rightarrow q\bar{q}$ Rej _{50%}
ParticleNet [56]	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT [57]	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
MIParT [58]	0.861	0.9878	10753	4202	123	1927	5450	31250	16807	542	402
L-GATr	0.865	0.9884	12195	4819	128	2304	5764	37736	19231	580	427



JetClass Tagging

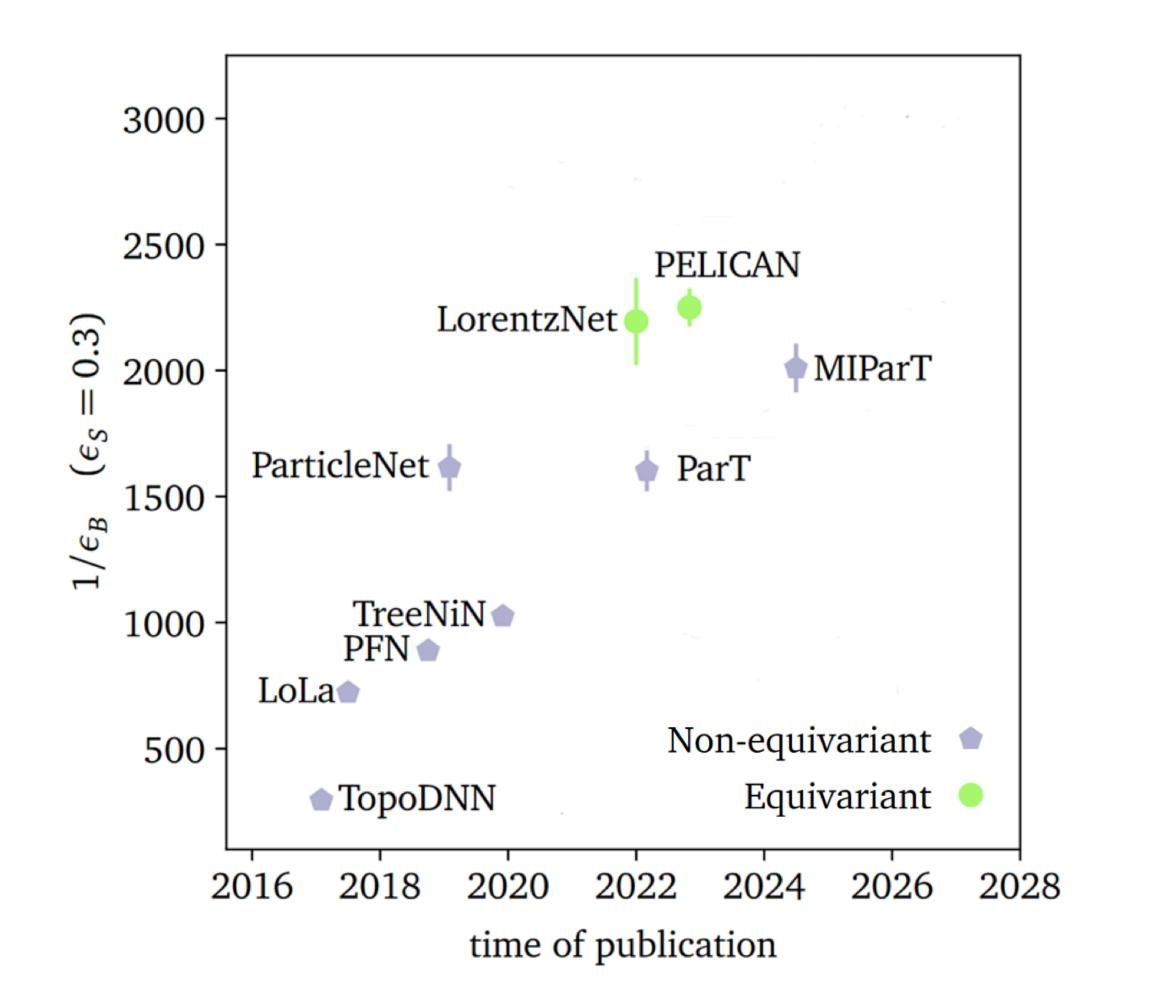
- Large and comprehensive jet dataset
- 100M events
- 10 classes

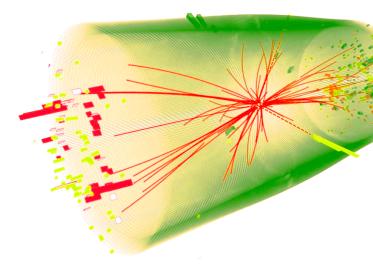
	All cla Accuracy			$H \rightarrow c\bar{c}$ Rej _{50%}		$H \rightarrow 4q$ Rej _{50%}	H → l vqą̄′ Rej _{99%}	$t \rightarrow bq\bar{q}'$ Rej _{50%}	t → bl v Rej _{99.5%}		$Z \rightarrow q\bar{q}$ Rej _{50%}
ParticleNet [56]	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT [57]	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
MIParT 58	0.861	0.9878	10753	4202	123	1927	5450	31250	16807	542	402
L-GATr	0.865	0.9884	12195	4819	128	2304	5764	37736	19231	580	427



Fraction	of	the	JetClass	dataset

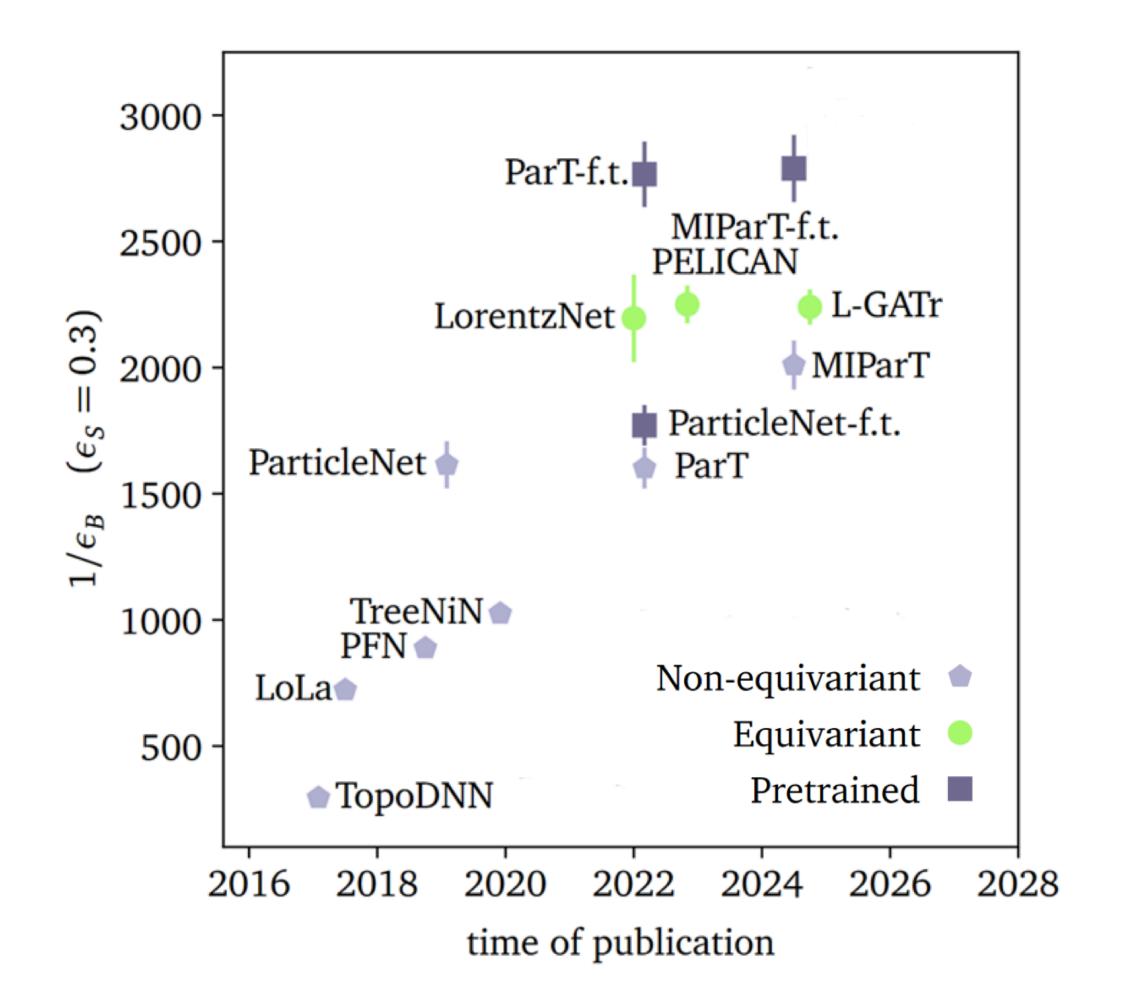
Impact of **pre-training**

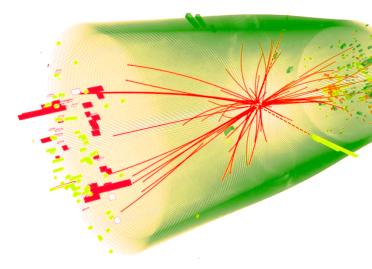




H.Qu et al., 2202.03772

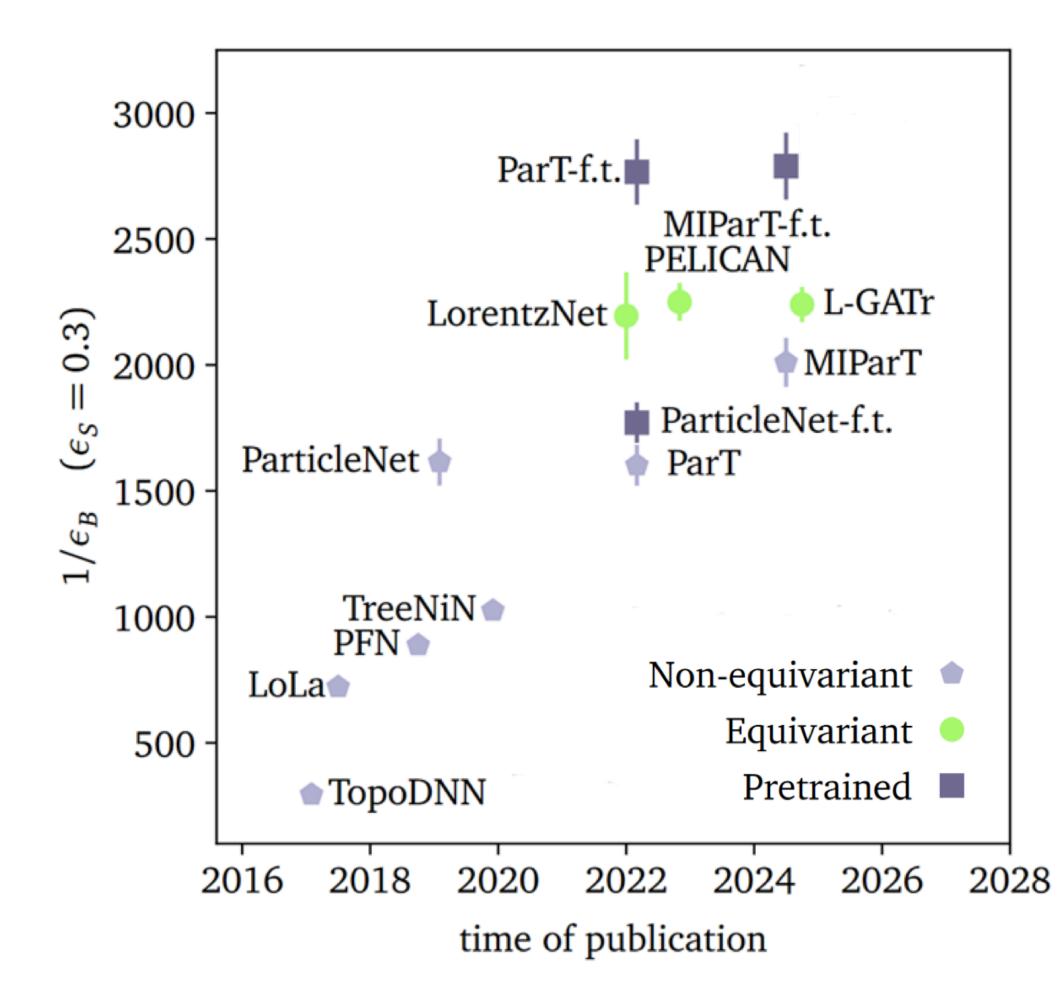
Impact of **pre-training**

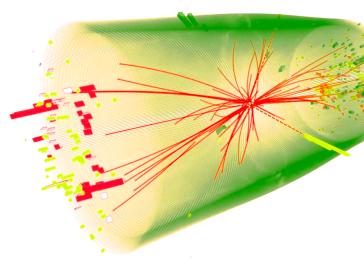




H.Qu et al., 2202.03772

Impact of **pre-training**

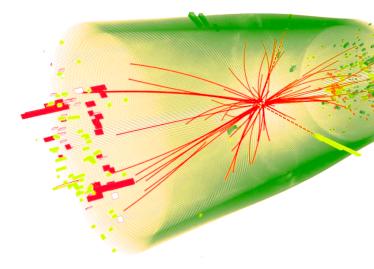




Strategy

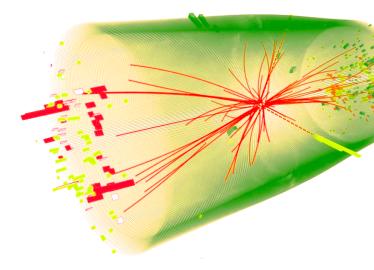
- 1. Pre-frain on Jefclass
- z. Restart the output layer
- 3. Fine-tune on top tagging

What if we combine pre-training and equivariance?



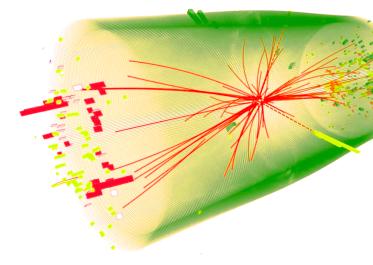
What if we combine pre-training and equivariance?

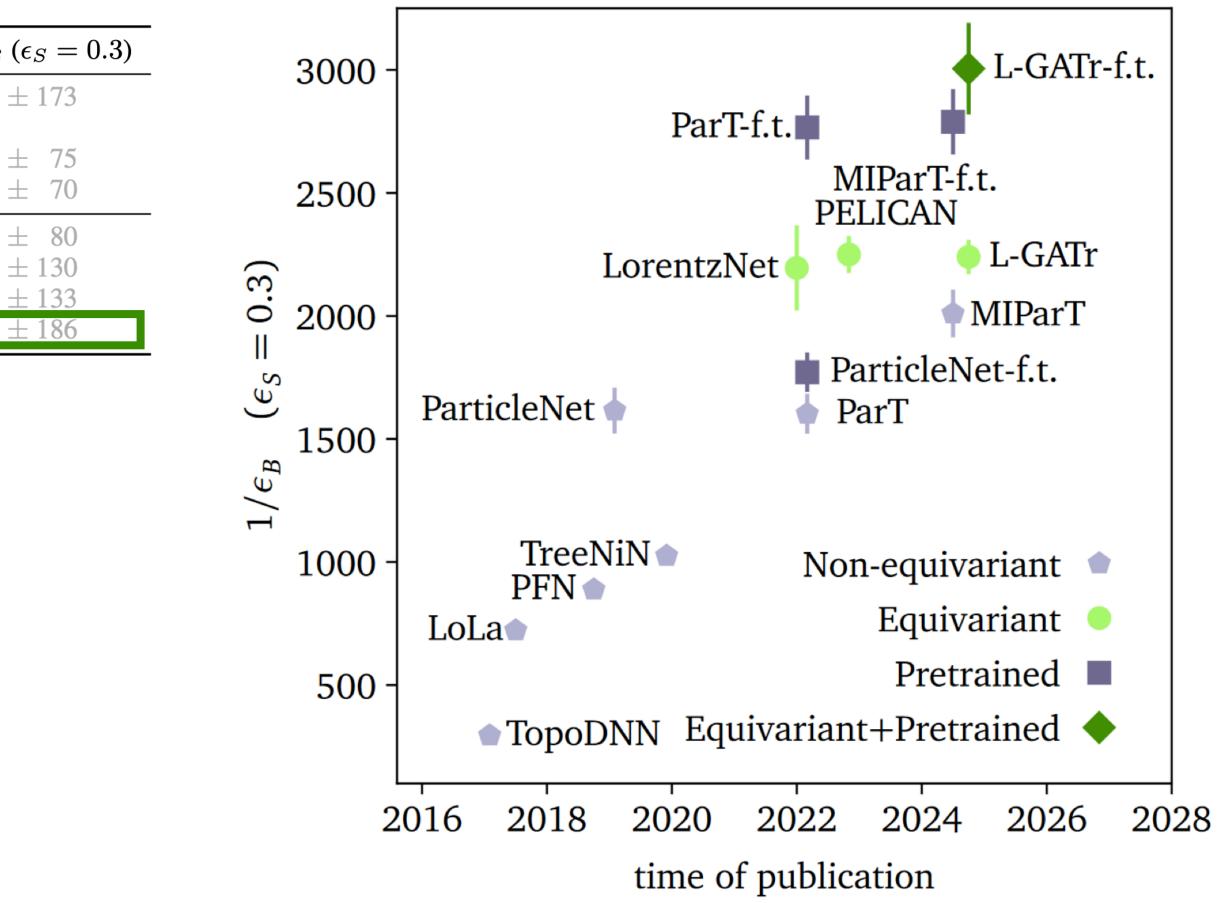
Network	Accuracy	AUC	$1/\epsilon_B \ (\epsilon_S = 0.5)$	$1/\epsilon_B~(\epsilon_S=0.3)$
LorentzNet	0.942	0.9868	498 ± 18	2195 ± 173
CGENN	0.942	0.9869	500	2172
PELICAN	$\textbf{0.9426} \pm 0.0002$	$\textbf{0.9870} \pm 0.0001$	_	$2250\pm~75$
L-GATr	$\textbf{0.9423} \pm 0.0002$	$\textbf{0.9870} \pm \textbf{0.0001}$	540 ± 20	$\textbf{2240} \pm \textbf{70}$
ParticleNet-f.t.	0.942	0.9866	487 ± 9	1771 ± 80
ParT-f.t.	0.944	0.9877	691 ± 15	2766 ± 130
MIParT-f.t.	0.944	0.9878	640 ± 10	2789 ± 133
L-GATr-f.t. (new)	$\textbf{0.9442} \pm 0.0002$	0.98792 ± 0.00004	661 ± 24	3005 ± 186



What if we combine pre-training and equivariance?

Network	Accuracy	AUC	$1/\epsilon_B~(\epsilon_S=0.5)$	$1/\epsilon_B$
LorentzNet	0.942	0.9868	498 ± 18	2195
CGENN	0.942	0.9869	500	2172
PELICAN	$\textbf{0.9426} \pm 0.0002$	0.9870 ± 0.0001	_	2250
L-GATr	$\textbf{0.9423} \pm 0.0002$	0.9870 ± 0.0001	540 ± 20	2240
ParticleNet-f.t.	0.942	0.9866	487 ± 9	1771
ParT-f.t.	0.944	0.9877	691 ± 15	2766
MIParT-f.t.	0.944	0.9878	640 ± 10	2789
L-GATr-f.t. (new)	$\textbf{0.9442} \pm 0.0002$	0.98792 ± 0.00004	66 1 ± 24	3005

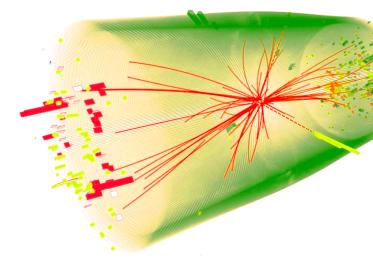


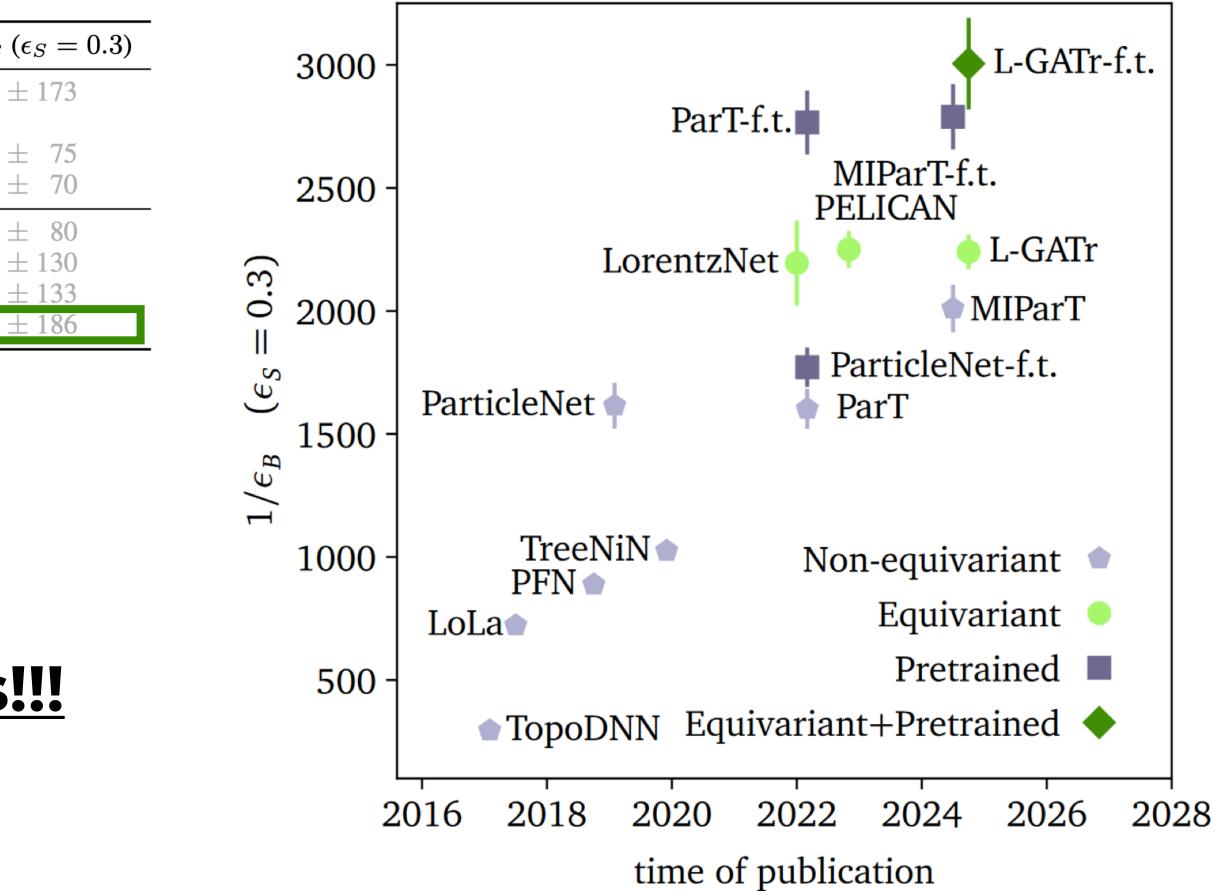


What if we combine pre-training and equivariance?

Network	Accuracy	AUC	$1/\epsilon_B \ (\epsilon_S = 0.5)$	$1/\epsilon_B$
LorentzNet	0.942	0.9868	498 ± 18	2195
CGENN	0.942	0.9869	500	2172
PELICAN	$\textbf{0.9426} \pm 0.0002$	$\textbf{0.9870} \pm 0.0001$	_	2250
L-GATr	0.9423 ± 0.0002	$\textbf{0.9870} \pm 0.0001$	540 ± 20	2240
ParticleNet-f.t.	0.942	0.9866	487 ± 9	1771
ParT-f.t.	0.944	0.9877	691 ± 15	2766
MIParT-f.t.	0.944	0.9878	640 ± 10	2789
L-GATr-f.t. (new)	0.9442 ± 0.0002	0.98792 ± 0.00004	66 1 ± 24	3005

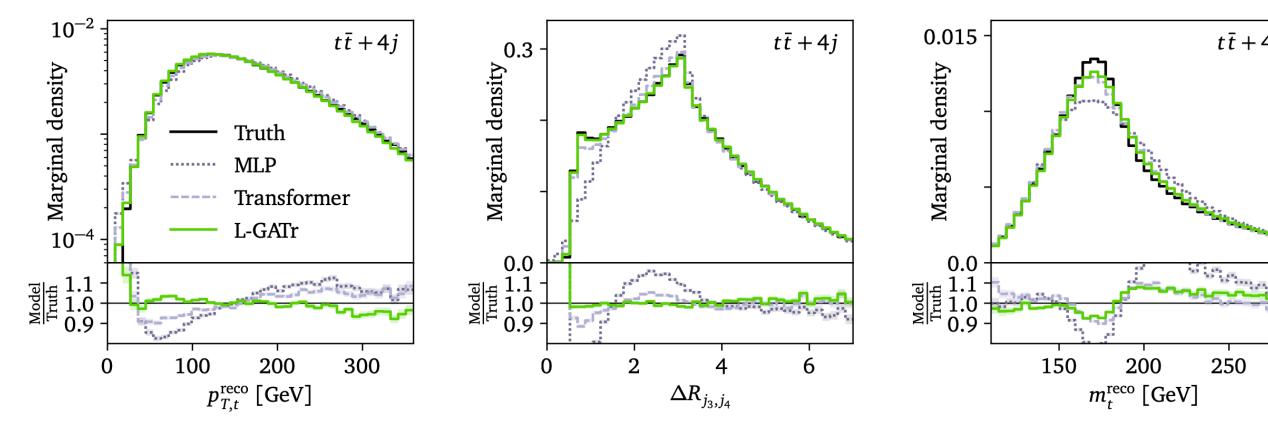
L-GATr is useful for more tasks!!!

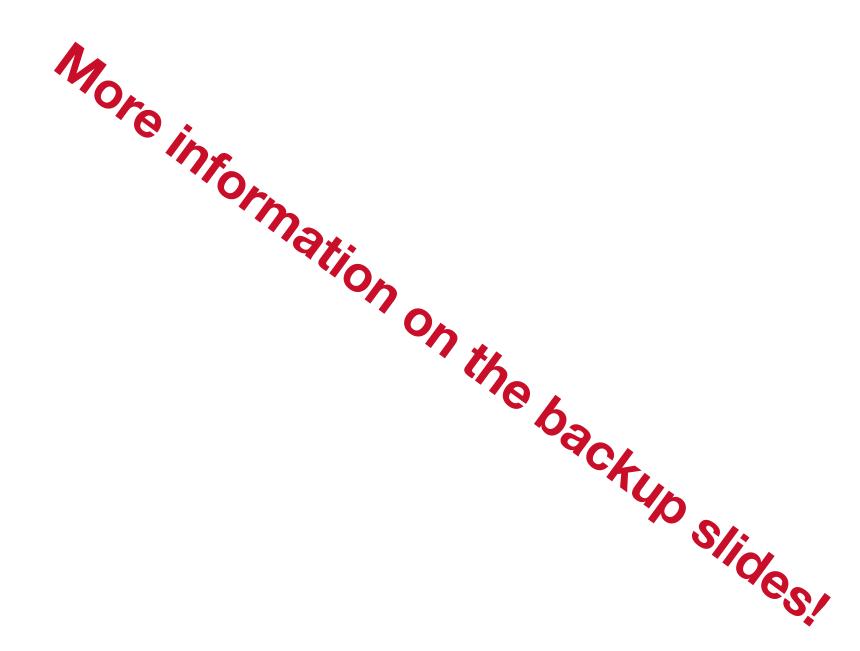


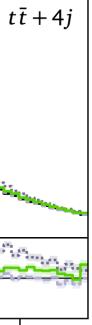


Further L-GATr Applications

- Amplitude regression
- Anomaly detection
- Unfolding
- Simulation-Based Inference
- Reconstructed event generation \rightarrow First ever Lorentz-equivariant generative model



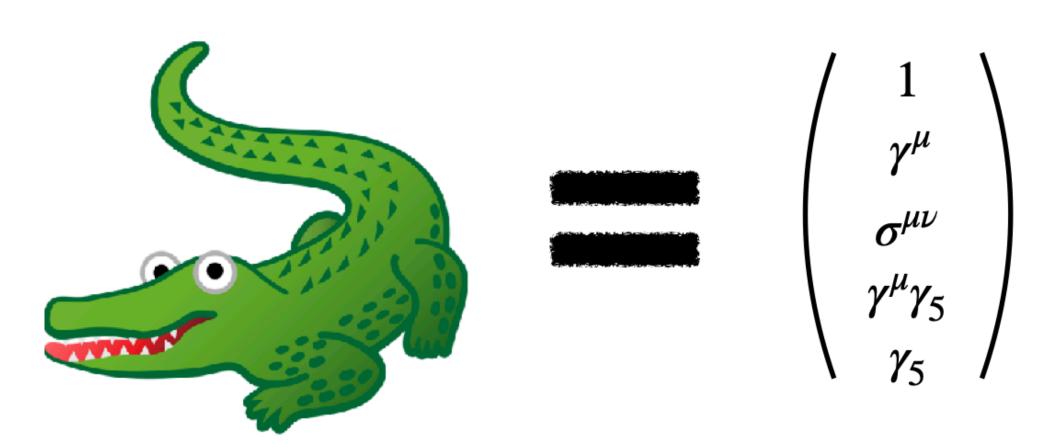




250

Conclusions

- L-GATr is a versatile architecture for LHC physics

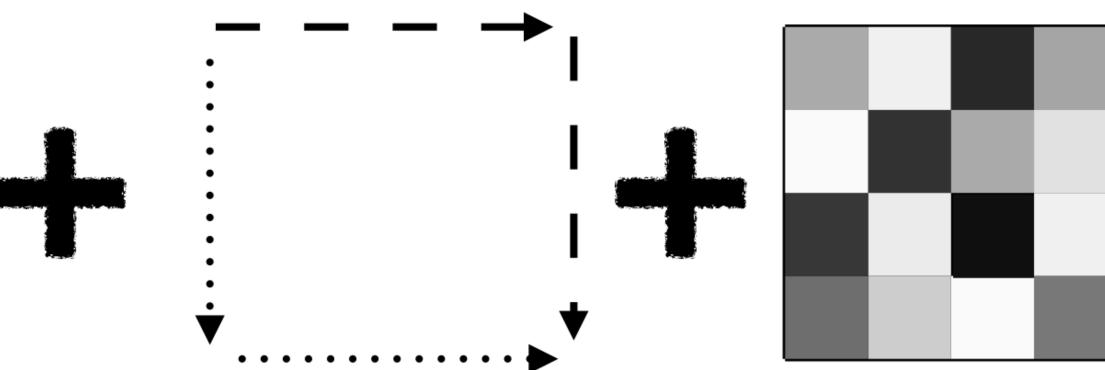


Lorentz-Equivariant Geometric Algebra Transformer

Geometric algebra representations

Equivariance boosts performance in multilple tasks

L-GAtr has a better scaling than competing baselines



Lorentz-Equivariant layers

Transformer architecture

Jonas Spinner

Pim de Haan

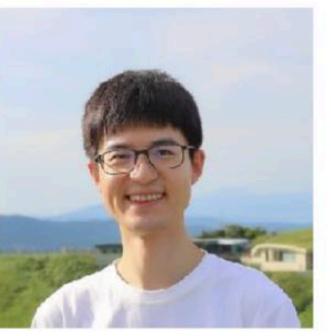
Tilman Plehn

Lorentz-Equivariant Geometric Algebra Transformer for High-**Energy Physics**

Jonas Spinner*, Victor Breso*, Pim de Haan, Tilman Plehn, Jesse Thaler, Johann Brehmer, NeurIPS 2024, arXiv:2405.14806

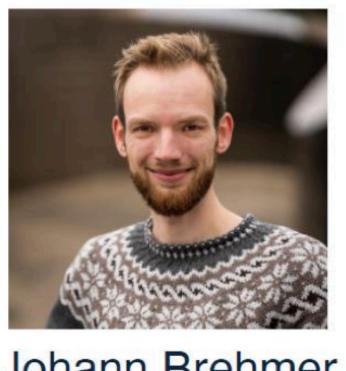
A Lorentz-Equivariant Transformer for all of the LHC

Johann Brehmer, Víctor Bresó, Pim de Haan, Tilman Plehn, Huilin Qu, Jonas Spinner, Jesse Thaler, arXiv:2411.00446



Huilin Qu

Jesse Thaler



Johann Brehmer

CS paper

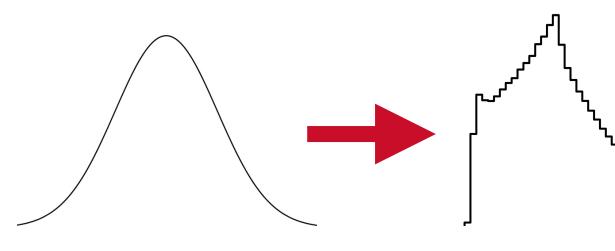
HEP paper

L-GATr code

Continuous normalizing flow (CNF)

connects a simple base density to a complex target density through a neural differential equation

$$\frac{d}{dt}\phi(x) = v_t(x)$$



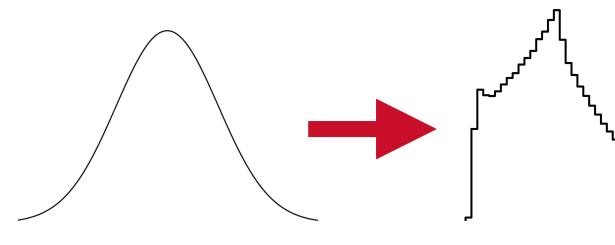
Continuous normalizing flow (CNF)

connects a simple base density to a complex target density through a neural differential equation

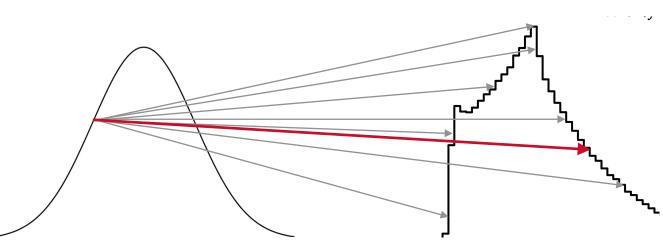
Conditional flow matching (CFM)

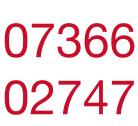
is a simple way to train CNFs by comparing the learned velocity $v_t(x)$ to a conditional target velocity $\mathcal{U}_t(x \mid x_1)$

$$\frac{d}{dt}\phi(x) = v_t(x)$$



$$\mathcal{L} = \langle (v_t(x) - u_t(x \mid x_1))^2 \rangle$$





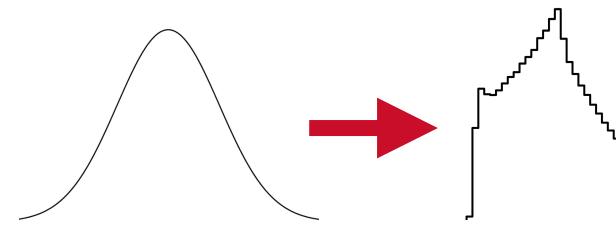
Continuous normalizing flow (CNF)

connects a simple base density to a complex target density through a neural differential equation

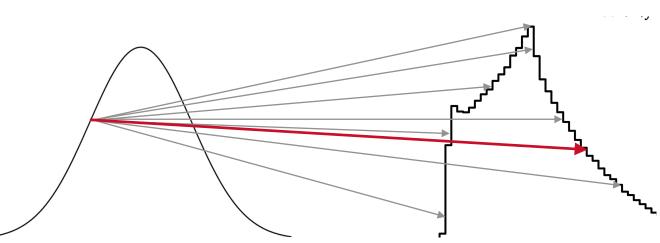
Conditional flow matching (CFM)

is a simple way to train CNFs by comparing the learned velocity $v_t(x)$ to a conditional target velocity $\mathcal{U}_t(x \mid x_1)$

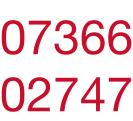
$$\frac{d}{dt}\phi(x) = v_t(x)$$



$$\mathcal{L} = \langle (v_t(x) - u_t(x \mid x_1))^2 \rangle$$



How to pick the target velocity $u_t(x \mid x_1)$?



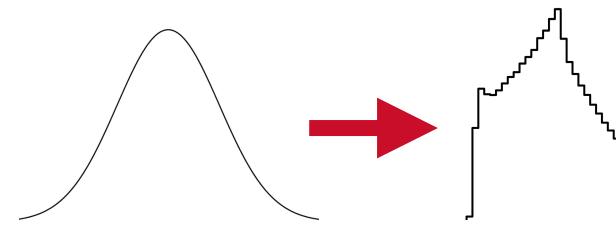
Continuous normalizing flow (CNF)

connects a simple base density to a complex target density through a neural differential equation

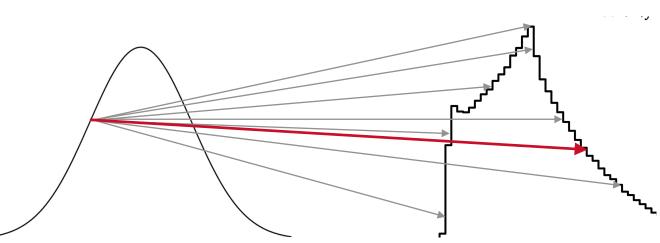
Conditional flow matching (CFM)

is a simple way to train CNFs by comparing the learned velocity $v_t(x)$ to a conditional target velocity $\mathcal{U}_t(x \mid x_1)$

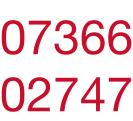
$$\frac{d}{dt}\phi(x) = v_t(x)$$



$$\mathcal{L} = \langle (v_t(x) - u_t(x \mid x_1))^2 \rangle$$



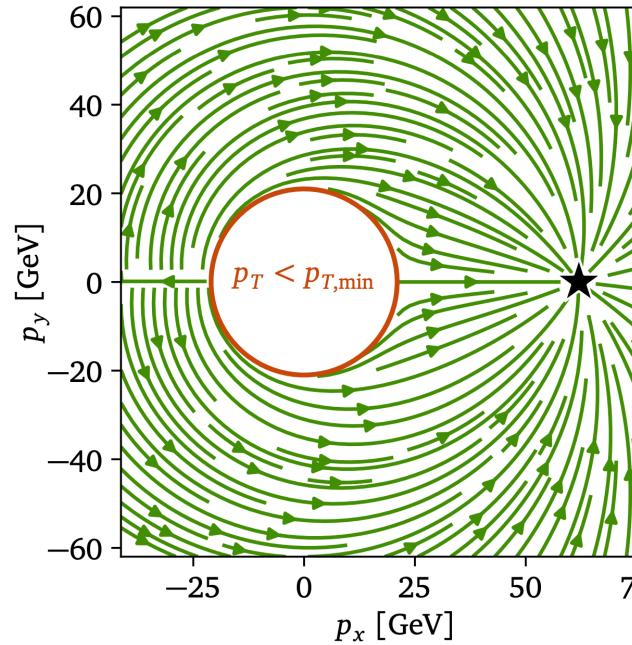
How to pick the target velocity $u_t(x \mid x_1)$?



Experiment: Reconstructed event generation Physics-inspired target trajectories

Straight trajectories in 'modified jet momenta' x:

$$p = \begin{pmatrix} E \\ p_x \\ p_y \\ p_z \end{pmatrix} \rightarrow f^{-1}(p) = x = \begin{pmatrix} x_p \\ x_m \\ x_q \\ x_\phi \end{pmatrix} \equiv \begin{pmatrix} \log(p_T - p_{T,\min}) \\ \log m^2 \\ \eta \\ \phi \end{pmatrix}$$

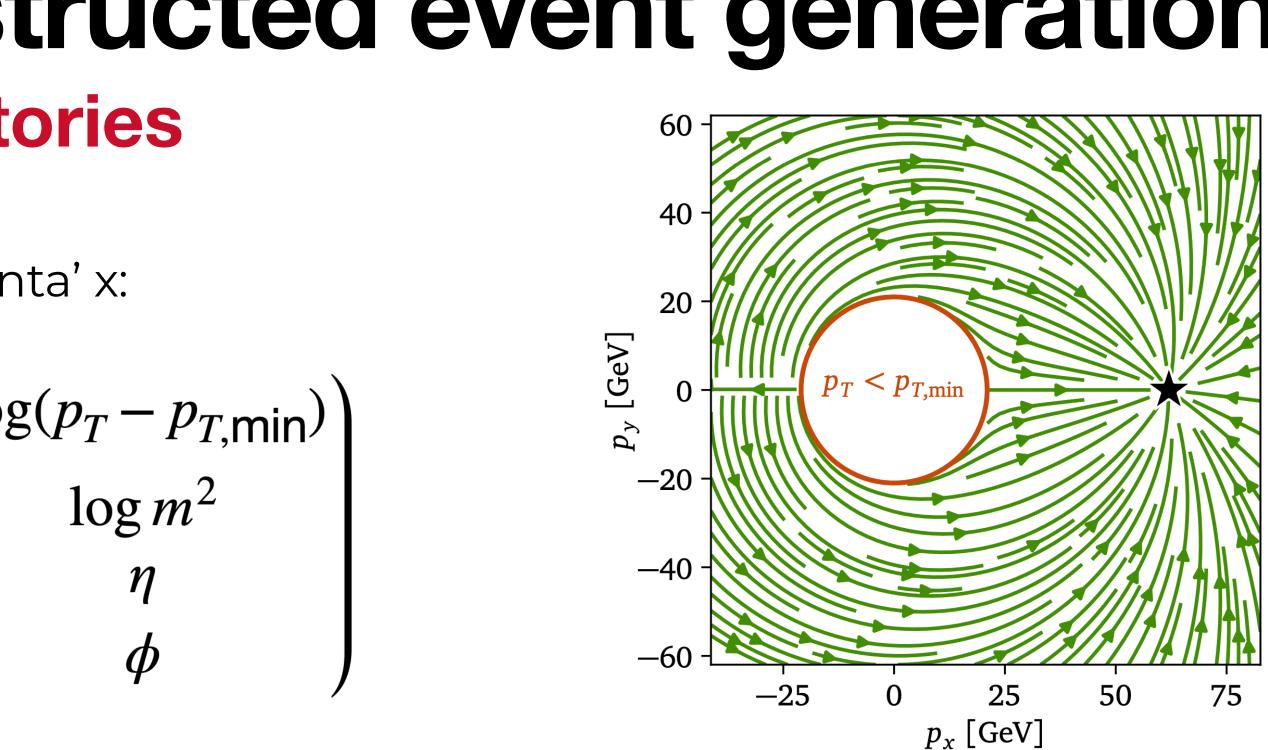


Experiment: Reconstructed event generation Physics-inspired target trajectories

Straight trajectories in 'modified jet momenta' x:

$$p = \begin{pmatrix} E \\ p_x \\ p_y \\ p_z \end{pmatrix} \rightarrow f^{-1}(p) = x = \begin{pmatrix} x_p \\ x_m \\ x_\eta \\ x_\phi \end{pmatrix} \equiv \begin{pmatrix} \log x_p \\ \log x_m \\ \log x_m \\ \log x_0 \end{pmatrix}$$

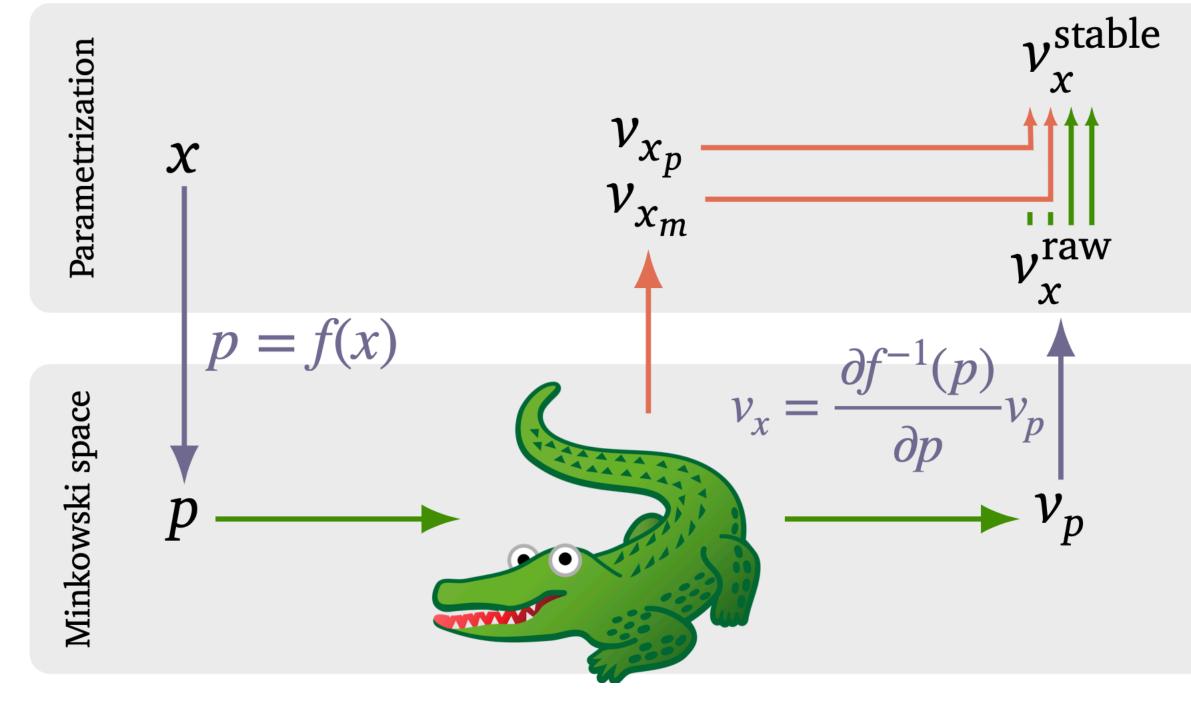
	Data	Architecture	Base distribution	Periodic	Neg. log-likelihood	AUC
	р	L-GATr	rejection sampling	✓	- 30.80 ± 0.17	0.945 ± 0.004
	x	MLP	rejection sampling	✓	-32.13 ± 0.05	0.780 ± 0.003
	x	L-GATr	rejection sampling	X	-32.57 ± 0.05	0.530 ± 0.017
	x	L-GATr	no rejection sampling	\checkmark	-32.58 ± 0.04	0.523 ± 0.014
(defaul	t) <i>x</i>	L-GATr	rejection sampling	✓	- 32.65 ± 0.04	0.515 ± 0.009

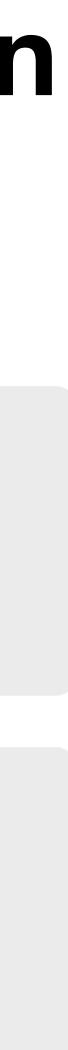


Experiment: Reconstructed event generation How to extract the CFM velocity field $v_t(x)$?

Extend standard CFM workflow with L-GATr:

- Transformations f(x)
 between Minkowski space p
 and the parametrization x
- Equivariant operations using multivectors
- Symmetry-breaking operations using scalars (required for numerical stability)



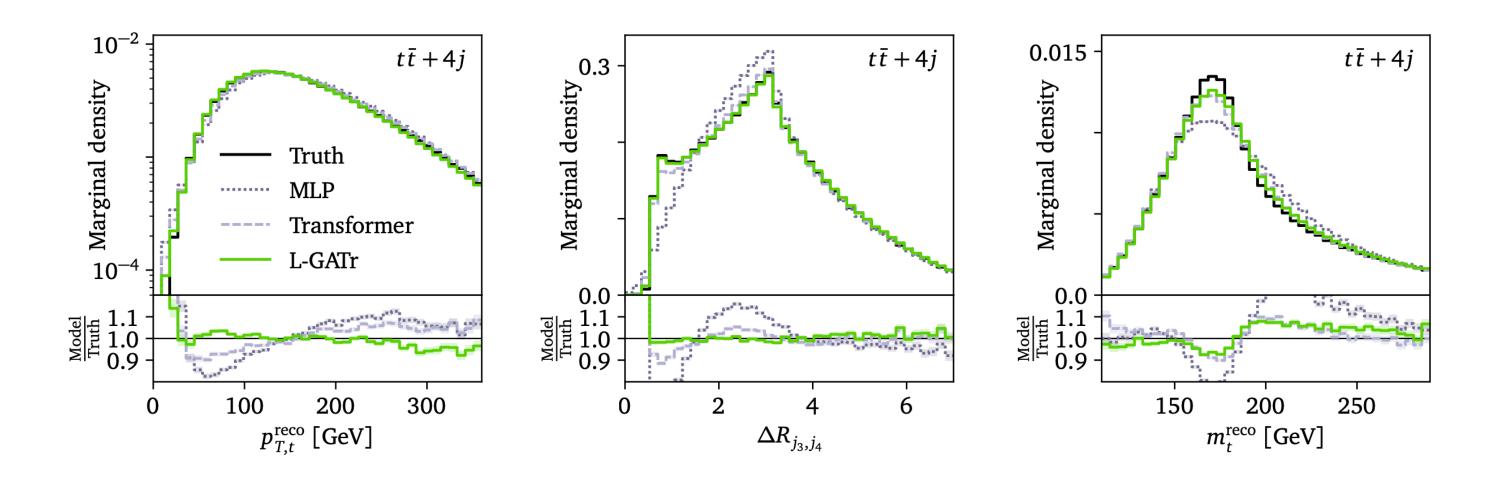


Experiment: Reconstructed event generation

Task: Build a generator that produces reconstructed level distributions

- Dataset: $pp \rightarrow t_h \overline{t}_h + nj$, n = 0...4

We develop the first-ever Lorentz-equivariant generative model trained with **Riemannian flow matching***

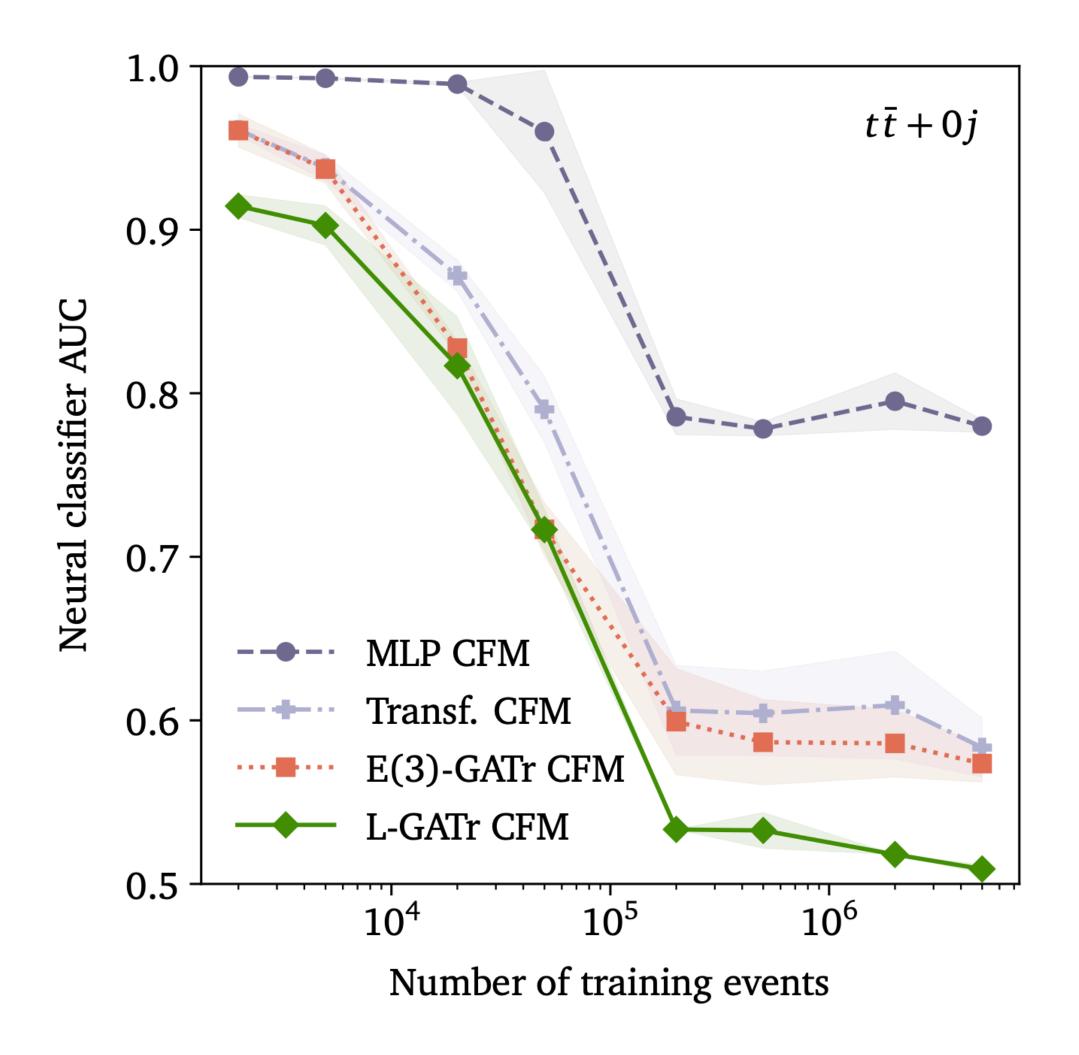


- Simulation chain: MadGraph + Pythia + Delphes + Reconstruction

- Equivariance helps with challenging features

- L-GATr outperforms all baselines across **multiple** process multiplicities

Experiment: Reconstructed event generation Result: Classifier metric

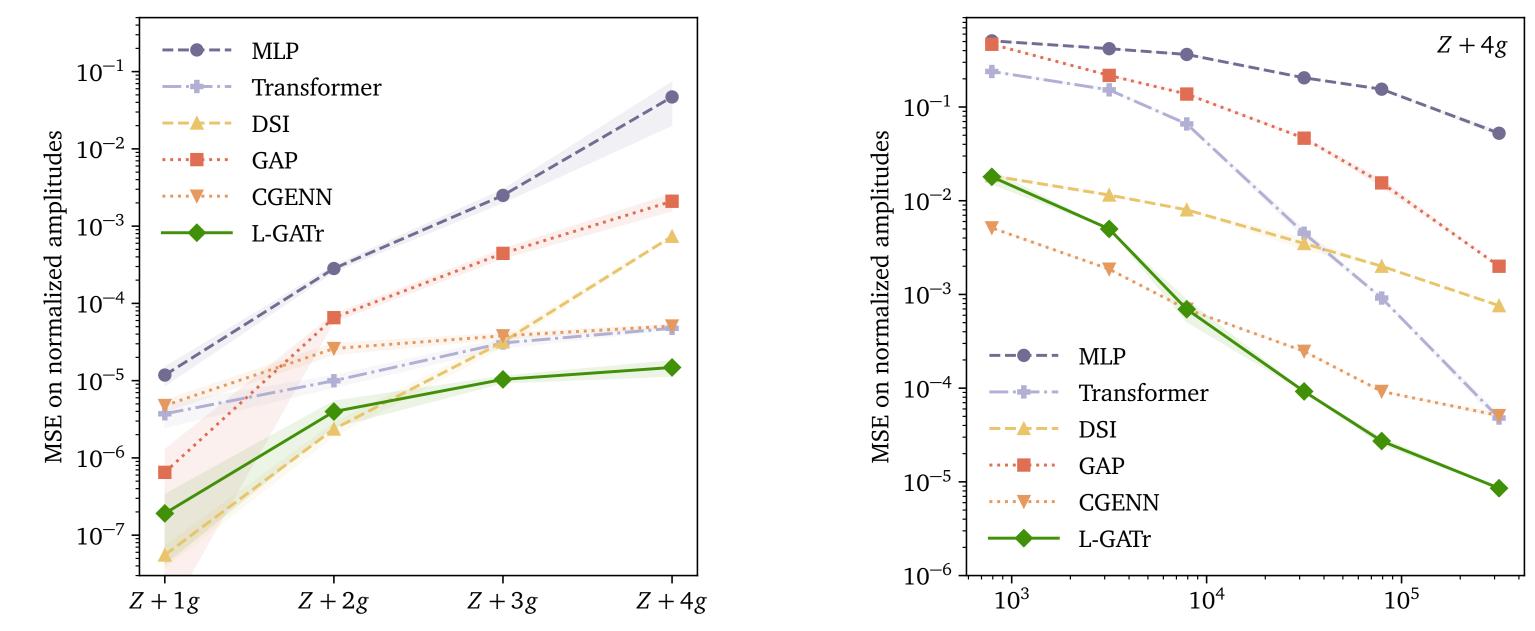


- L-GATr generates samples that a classifier can barely distinguish from the ground truth

- Equivariant networks with full symmetry-breaking outperform non-equivariant networks

Experiment: QFT amplitude regression

Task: Phase space points $\{p_1, ..., p_n\}$ \longrightarrow Squared amplitude \mathcal{M}^2



- Expensive operation at scale for EW processes and NLO calculations

- Neural surrogates are fast, but they don't scale well to high multiplicity

Number of training samples

- Key drivers: Lorentz and permutation equivariance

- High data efficiency (important for interpolation tasks)

VB, G. Heinrich et al., 2412.09534 J. Spinner, L. Favaro et al., 2505.20280

