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Equivariant Neural 
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Spacetime Algebra
- How do we build it? We start with real vectors      with the property

Same properties as the 
gamma matrices!

Scalar Vector Bivector Axial vector Pseudoscalar

Multivectors
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Spacetime Algebra
- Lorentz transformations: Each grade 

transforms separately

Equivariant maps never 
mix grade components

Easy to build equivariant 
versions of ordinary networks

Lorentz Equivariance + Geometric 
Algebra + Transformer = L-GATr
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L-GATr
Key feature: Transformer scaling



Experiment: Jet Tagging
Top Tagging



Experiment: Jet Tagging
JetClass Tagging 

- Large and comprehensive jet dataset 

- 100M events 

- 10 classes



Experiment: Jet Tagging
JetClass Tagging 

- Large and comprehensive jet dataset 

- 100M events 

- 10 classes



Experiment: Jet Tagging
JetClass Tagging 

- Large and comprehensive jet dataset 

- 100M events 

- 10 classes



Experiment: Jet Tagging
Impact of pre-training

H.Qu et al., 2202.03772



Experiment: Jet Tagging
Impact of pre-training

H.Qu et al., 2202.03772



Experiment: Jet Tagging
Impact of pre-training

H.Qu et al., 2202.03772



Experiment: Jet Tagging
What if we combine pre-training and equivariance?



Experiment: Jet Tagging
What if we combine pre-training and equivariance?



Experiment: Jet Tagging
What if we combine pre-training and equivariance?



Experiment: Jet Tagging
What if we combine pre-training and equivariance?

L-GATr is useful for more tasks!!!



Further L-GATr Applications
- Amplitude regression 

- Anomaly detection 

- Unfolding 

- Simulation-Based Inference 

- Reconstructed event generation  First ever Lorentz-
equivariant generative model 

→

More information on the backup slides!
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Try L-GATr 
for yourself!
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Experiment: Reconstructed event generation

Extend standard CFM workflow with L-GATr: 

          

How to extract the CFM velocity field ?vt(x)

• Transformations  
between Minkowski space  
and the parametrization  

• Equivariant operations 
using multivectors  

• Symmetry-breaking 
operations using scalars 
(required for numerical 
stability)      

f(x)
p

x



Experiment: Reconstructed event generation
Task: Build a generator that produces reconstructed level distributions  

- Dataset:  

- Simulation chain: MadGraph + Pythia + Delphes + Reconstruction 

We develop the first-ever Lorentz-equivariant generative model trained 
with Riemannian flow matching* 

pp → tht̄h + nj, n = 0…4

- Equivariance helps with 
challenging features 

- L-GATr outperforms all 
baselines across multiple 
process multiplicities



Experiment: Reconstructed event generation
Result: Classifier metric

- L-GATr generates samples that a 
classifier can barely distinguish  
from the ground truth 

- Equivariant networks with full 
symmetry-breaking outperform 
non-equivariant networks



Experiment: QFT amplitude regression
Task: Phase space points             Squared amplitude  

- Expensive operation at scale for EW processes and NLO calculations 

- Neural surrogates are fast, but they don’t scale well to high multiplicity 

{p1, …, pn} ℳ2

Z + 1g Z + 2g Z + 3g Z + 4g

10�7

10�6

10�5

10�4

10�3

10�2

10�1

M
SE

on
no

rm
al

iz
ed

am
pl

itu
de

s

MLP
Transformer
DSI
GAP
CGENN
L-GATr

103 104 105

Number of training samples

10�6

10�5

10�4

10�3

10�2

10�1

M
SE

on
no

rm
al

iz
ed

am
pl

itu
de

s

Z + 4g

MLP
Transformer
DSI
GAP
CGENN
L-GATr

- Key drivers: Lorentz and 
permutation equivariance 

- High data efficiency 
(important for interpolation 
tasks)

VB, G. Heinrich et al., 2412.09534

J. Spinner, L. Favaro et al., 2505.20280


