Fast, accurate, and precise detector simulation with vision transformers

Luigi Favaro, Ayodele Ore, Sofia Palacios Schweitzer, Tilman Plehn, Andrea Giammanco

16/06/25 — EuCAIFCon25

Simulation chain

Detector simulation

- High-Luminosity LHC will produce unmatched amount of data;
- simulations need to match the collected statistics.

energy

Detector simulation

- High-Luminosity LHC will produce unmatched amount of data;
- simulations need to match the collected statistics.

energy

Detector simulation

Calorimeter shower

Detector simulation

Calorimeter shower

ML emulators

Slow

ML emulators

Luigi Favaro

Slow

ML emulators

Luigi Favaro

Slow

Vision Transformers Paradigm

Detector geometry

- Energy deposition in each cell;
- •high-dimensional input;
- 3D structure: (x, y, z) or (r, α, z) .

Vision Transformers Paradigm

Detector geometry

- •Energy deposition in each cell;
- •high-dimensional input;
- 3D structure: (x, y, z) or (r, α, z) .

Divide into patches

- Define a recipe for patching;
- •domain-knowledge input.

Vision Transformers Paradigm

Detector geometry

- Energy deposition in each cell;
- •high-dimensional input;
- 3D structure: (x, y, z) or (r, α, z) .

Divide into patches

- Define a recipe for patching;
- •domain-knowledge input.

- Self-attention on patched objects
 - Stack of transformer blocks;
 - conditions: (E_{inc}, E_i, \ldots) .

& Generative networks

Normalizing Flows

Learn m bins RQS for n input feature:

$$\mathcal{L} = -\left\langle \log p_z(f_\theta(x)) + \log \left| \frac{\partial f_\theta}{\partial x} \right| \right\rangle$$

• Fast

• Discrete, less expressive

& Generative networks

Normalizing Flows

Learn *m* bins RQS for *n* input feature:

$$\mathcal{L} = -\left\langle \log p_z(f_\theta(x)) + \log \left| \frac{\partial f_\theta}{\partial x} \right| \right\rangle$$

• Fast

• Discrete, less expressive

Conditional Flow Matching

Regress a velocity vector comparing to a target conditional velocity:

$$\mathscr{L} = \left\langle \left| \left| v_{\phi}(x,t) - v(x,t \,|\, x_0) \right| \right| \right\rangle$$

- Very expressive
- Slower, multiple function evaluations

& Generative networks

Normalizing Flows

Learn *m* bins RQS for *n* input feature:

Conditional Flow Matching

Regress a velocity vector comparing to a target conditional velocity:

$$\mathscr{L} = \left\langle \left| \left| v_{\phi}(x,t) - v(x,t \,|\, x_0) \right| \right| \right\rangle$$

Sampling
$$\longrightarrow x(t=0) = x(t=1) - \int_0^1 v_{\phi}(x,t) dt$$

CaloDREAM — example

- Split generation of layer energies and voxels;
- split detector into patches;
- embed patches and conditions;
- apply a residual transformation to the inputs: - multi-head self-attention;
 - fully-connected network.

$$x_l = x_h + \gamma_l \cdot g_l(a_l x_h + b_l)$$

AdaLN: γ_l, a_l, b_l learnable, conditioned on t, E_{inc}, u

• predict a v_{θ} for each voxel.

arXiv:2405.09629, LF, Ore A., Palacios Schweitzer S., Plehn T.

Datasets

CaloChallenge

Dataset 1 (AtlFast3)

- γ showers 368 voxels π^+ showers — 533 voxels 121k showers discrete E_{inc}
 - + irregular geometries

All the datasets are available on Zenodo and can be accessed from: https://calochallenge.github.io/homepage/

Datasets

CaloChallenge

Dataset 1 (AtlFast3) γ showers — 368 voxels π^+ showers — 533 voxels 121k showers discrete E_{inc} + irregular geometries

Dataset 2 100k showers

 (r, α, z) : (9, 16, 45)

All the datasets are available on Zenodo and can be accessed from: https://calochallenge.github.io/homepage/

- e^+ showers 6480 voxels
- $E_{\text{inc}} \in \text{LogUnif}(1, 10^3) \text{ GeV}$

Datasets

CaloChallenge

Dataset 1 (AtlFast3) γ showers — 368 voxels π^+ showers — 533 voxels 121k showers discrete E_{inc} + irregular geometries

Dataset 2 100k showers

 $E_{\text{inc}} \in \text{LogUnif}(1, 10^3) \text{ GeV}$ (r, α, z) : (9, 16, 45)

All the datasets are available on Zenodo and can be accessed from: https://calochallenge.github.io/homepage/

- e^+ showers 6480 voxels

Dataset 3

 e^+ showers — 40500 voxels 100k showers $E_{\text{inc}} \in \text{LogUnif}(1,10^3) \text{ GeV}$ (r, α, z) : (18, 50, 45)

Irregular geometry

Dataset 1 – γ

$$\frac{1}{2} - \langle \xi \rangle^2, \quad \xi \in \{\phi, \eta\}$$

Irregular geometry

Total energy

Incident energy

High-Level Features Hadronic showers

energy-weighted shower depth:

 $d_{r_j} =$

 $\sum_{i}^{N} k_{i} E_{i,r_{j}}$

 $E_{\mathsf{tot},j}$

16/06/25 - Cagliari

Scaling to high-dimensionalities

Dataset 2

$$\xi \in \{\phi, \eta\}$$

16/06/25 - Cagliari

Scaling to high-dimensionalities

Dataset 3

,
$$\xi \in \{\phi, \eta\}$$

Scaling to high-dimensionalities

Dataset 3

layer sparsity

Evaluation Fidelity — Classifier test

- How to evaluate the performance of gen. neural
- Train a classifier:
- •LR optimal observable in simple two hypothese
- •Low-level (LL) classifier: inputs are all the voxels
- High-level (HL) classifier: inputs are set of HLFs.

networks?	NFs	LL AUC	HL AUC
	DS1 - γ	0.67	0.54
	DS1 - π^+	0.67	0.63
es test;	DS2	0.76	0.70
5;	DS3	0.84	0.71
•			
	CFMs	LL AUC	C HL AUC
	$\mathrm{DS1}$ - γ	0.51	0.51
	DS1 - π^+	0.52	0.63
	DS2 (DREAM	() 0.53	0.52

DS3 (DREAM)

0.63

0.52

Evaluation Fidelity — Classifier test

- How to evaluate the performance of gen. neural Train a classifier:
- LR optimal observable in simple two hypothese
- Low-level (LL) classifier: inputs are all the voxels
- High-level (HL) classifier: inputs are set of HLFs.

Extract a weight distribution: $w(x) = \frac{C(x)}{1 - C(x)} \approx$

Calculate Area Under the Curve (AUC) score:

 $AUC = 0.5 \implies$ indistinguishable samples

networks?	NFs	LL AUC	HL AUC
	DS1 - γ	0.67	0.54
	DS1 - π^+	0.67	0.63
es test;	DS2	0.76	0.70
5:	DS3	0.84	0.71
•			
	CFMs	LL AUC	C HL AUC
p_{G4}	DS1 - γ	0.51	0.51
$\frac{x}{n}(x)$	DS1 - π^+	0.52	0.63
rmodel	DS2 (DREAM) 0.53	0.52
	DS3 (DREAM) 0.63	0.52

Evaluation

Generation speed

Many factors can affect the generation speed, he

- generation time per shower;
- •timed on one A100 GPU;
- batch size 100
- including overheads from moving data to GPU

Conditional Flow Matching:

- •time for one step of Runge-Kutta 4 (4 n.f.e.);
- previous results use 20 steps with RK4 ODE solver.

\frown	rO	•	
し	って	•	

	NFs [ms per shower]	CFMs [ms per shower]
	full gen.	1 step RK4
$\mathrm{DS1}$ - γ	2	1
DS1 - π^+	2	2
DS2	15	2
DS3	60	10

Evaluation

Generation speed

Many factors can affect the generation speed, here:

- •generation time per shower;
- •timed on one A100 GPU;
- •batch size 100
- •including overheads from moving data to GPU

Conditional Flow Matching:

- •time for one step of Runge-Kutta 4 (4 n.f.e.);
- previous results use 20 steps with RK4 ODE solver.

	NFs	CFMs
	[ms per shower]	[ms per shower]
	full gen.	$1 { m step} { m RK4}$
$\mathrm{DS1}$ - γ	2	1
DS1 - π^+	2	2
DS2	15	2
DS3	60	10

Conservative Geant4 shower time: 1-10 s/shower (highly dependent on E_{inc}) \implies much faster generation time!

Bespoke samplers Speeding up CFMs

How to reduce the number of function evaluations?

- Bespoke samplers: keep the model fixed and learn a model-specific solver;
- use the general expression for a non-stationary solver:
 - x_0 latent point $(t_i, x_i)_{i=0}^N$ V_i vector fields $x_{i+1} = a_i x_0 + b_i \cdot V_i$ a_i, b_i, t_i learnable parameters

• minimize either the global or the local truncation error wrt. a reference solver:

$$\mathcal{L}_{GTE} = \langle [x_{ref}(1) - x_N]^2 \rangle_{x_0 \sim \mathcal{N}} ,$$

from **Bespoke solvers**, Shaul N. et al.

$$\mathcal{L}_{LTE} = \left\langle \sum_{i=0}^{N-1} \left[x_{ref}(t_{i+1}) - (a_i x_0 + b_i \cdot V_{ref,i}) \right]^2 \right\rangle_{x_0 \sim \mathcal{N}}$$

Bespoke samplers

Speeding up CFMs

16/06/25 - Cagliari

More in the writeup! arXiv:2410.21611

Largest comparison of gen. networks:

Outlook

CaloChallenge

- multi-class classifiers;
- other evaluation metrics, KPD/FPD;
- CPU/GPU generation times.

	_
)	-
)	(
-	-
1	
٦	1
3	-
5	
	ſ
3	
1	
T.	
	- 1
	ſ

Outlook

Vision Transformers — messages

Fast detector simulation:

- ViT can be used to train (continuous) normalizing flows;
- NFs are faster but less accurate;
- CFMs are more accurate but require multiple evaluations

 \longrightarrow Bespoke solvers can reduce the number of function evaluations;

• now need to go from simulated cells to downstream tasks...

	_
)	-
)	(
-	-
1	
٦	1
3	-
5	
	ſ
3	
1	
T.	
	- 1
	ſ

Outlook

Vision Transformers — messages

Fast detector simulation:

- ViT can be used to train (continuous) normalizing flows;
- NFs are faster but less accurate;
- CFMs are more accurate but require multiple evaluations

 \longrightarrow Bespoke solvers can reduce the number of function evaluations;

• now need to go from simulated cells to downstream tasks...

Vision transformers:

- ViTs can handle irregular input data;
- scale well to high-dimensional spaces;
- interesting beyond detector simulation, check out Ayo's SKATr.

	_
)	-
)	(
-	-
1	
٦	1
3	-
5	
	ſ
3	
1	
T.	
	- 1
	ſ

Outlook

Open-source code

- Stay tuned for an open-source repository;
- easily define patching functions...
 - ... and train generative networks;
- let me know your use cases!


```
class BaseModel(nn.Module):
   def __init__(self, shape):
       super().__init__()
       self.shape = shape
   def from_patches(self, x):
        .....
       Transform from input geometry to patches
       Parameters
       x: torch.Tensor
            Input tensor of the form (batch_size, *dims)
        Returns
       output: torch.Tensor
            Output patched tensor with shape (batch_size, #patches, patch_dim)
        .....
       pass
   def to_patches(self, x):
       Transform from patches back to original geometry
       Parameters
       x: torch.Tensor
            Input tensor of the form (batch_size, num_patches, patch_dim)
       Returns
       output: torch.Tensor
            Output tensor with shape (batch_size, *dims)
        .....
       pass
    def forward(self, x, c, rev=False, jac=True):
        .....
       Simple forward pass
```


	_
)	-
)	(
-	-
1	
٦	1
3	-
5	
	ſ
3	
1	
T.	
	- 1
	ſ

Fast, accurate, and precise detector simulation with vision transformers

CaloDREAM

GitHub repo

	_
)	-
)	(
-	-
1	
٦	1
3	-
5	
	ſ
3	
1	
T.	
	- 1
	ſ

Fast, accurate, and precise detector simulation with vision transformers

CaloDREAM

Thank you for your attention!

GitHub repo

	_
)	-
)	(
-	-
1	
٦	1
3	-
5	
	ſ
3	
1	
T.	
	- 1
	ſ

Conditional Flow Matching

Promote the discrete transformation to a continuous one:

$$\frac{dx(t)}{dt} = v(x(t), t) \quad \text{with} \quad x \in \mathbb{R}^d$$

We want to impose the boundary conditions for p

Need to define the training trajectories \longrightarrow linear, simplest choice

Learn this velocity field with a NN:

$$\frac{\partial p(x,t)}{\partial t} + \nabla_x [p(x,t)v(x,t)] = 0.$$

$$(x,t): \qquad p(x,t) \to \begin{cases} \mathcal{N}(x;0,1) & t \to 1 \\ p_{data}(x) & t \to 0 \end{cases}.$$

$$x(t \mid x_0) = (1 - t)x_0 + t\epsilon \qquad \epsilon \sim \mathcal{N}(0, 1)$$

$$\mathscr{L} = \left| \left| v(x,t) - v_{\phi}(x,t) \right| \right|_{L_2}$$

Conditional Flow Matching

$$t \sim \mathcal{U}([0,1])$$
 —

$$x_0 \sim p_{\text{data}}(x_0), \epsilon \sim \mathcal{N}(0, 1) \longrightarrow x(t)$$

$$\mathcal{L}_{\text{CFM}} = \left\langle \left[v_{\phi}((1-t)x_0 + t\epsilon, t) - (\epsilon - x_0) \right]^2 \right\rangle_{U(0,1), \mathcal{N}, p_{data}}$$

Sampling \longrightarrow solve the differential equation num

Jet diffusion versus JetGPT

nerically:
$$x(t = 0) = x(t = 1) - \int_0^1 v_{\phi}(x, t) dt$$

٠

Learning normalised showers

Learning normalised showers

normalized showers

$$u_0 = \frac{\sum_i E_i}{f E_{inc}}$$
 and $u_i = \frac{E_i}{\sum_{j \ge i} E_j}$,

logit

$$\begin{aligned} x_{\alpha} &= (1 - 2\alpha)x + \alpha \in [\alpha, 1 - \alpha] & \text{with} \quad \alpha = 10^{-6} \\ x' &= \log \frac{x_{\alpha}}{1 - x_{\alpha}}. \end{aligned}$$

Factorise the problem into:

- learn the energy distribution, $p(u | E_{inc})$
- learn the normalised voxels $p(x | u, E_{inc})$

Learning layer energies

High-Level Features Hadronic showers

Weight distributions

