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The Galactic Double White Dwarf Population

Figure from the LISA red book
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LISA



Figure from the LISA red book

A cocktail party of a few, loud, 
resolvable sources, and an 
overlapping, cacophonous, 
incoherent foreground.

O(30,000)

O(30,000,000)!
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The Galactic Double White Dwarf Population



Figure from the LISA red book
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The Galactic Double White Dwarf Population

Where lies the population signature: 
the few resolvable sources 1 or 
the many unresolvable 

 sources 2 ?

1 Korol, Rossi, Barausse, MNRAS 483 no. 4 5518–5533
2 Smith et al 2020; 2004.09700
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The Data
GPU-leveraged forward simulator



O(106) frequency bins! 
Computational prohibitive likelihood evaluation. 

Major bottleneck for Bayesian samplers.
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The Data

SBI might be a necessity.



Simulation-based Inference

Population Λ : =       ⍴Distribution(Mass, Separation), NSources, Milky WayScale
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Source Ө : =         Mass, Separation, Sky-position, Distance
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Simulation-based Inference

Population Λ : =       ⍴Distribution(Mass, Separation), NSources, Milky WayScale

Data D : =                         ∑i GWi  + nLSIA

Simulator

Source Ө : =         Mass, Separation, Sky-position, DistanceSBI

Given examples of Λ → D, 
              SBI solves the inverse problem D → Λ,  i.e., p(Λ|D, MSimulator)
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1 - fb

~rb

~zd

~Rd

BulgeDisc

Total DWD Number : 1
Primary DWD Mass Dist. : 2
Separation Dist. : 1
MW Disc : 2
MW Bulge : 2
LISA Noise Parameters : 2

Total          : 10d 

Λ : Parameterizing the Population
M1 distribution

Milky Way Scale
Noise 

Characteristic

Separation Index
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A network with O(106) input neurons is very 
memory intensive and data hungry.

Need to summarize the data.

Data summary

Our current prescription:

Linear fit of data within frequency batches
Summary: fit and residual parameters.

Data reduction: O(106) → O(103
 )
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Data summary
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Network Architecture
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Training the SBI

5x105 
samples from 

p(Λ , D)
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Mass distribution
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Milky Way Scale
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But, where lies the information?

17

Figure from the LISA red book
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Where’s the population signature?
the few resolvable sources  or 
the many unresolvable  sources  ?



Unresolvable sources
Resolvable sources

But, where lies the information?
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Probably the resolvable !
(at least for this particular data summary)



Caveats, caveats, caveats
* The inference can only be as good as the simulator/model  p(Λ|D, MSimulator).

* The inference can only be as good as the data summary.

* The intractable (or at least hard-to-pose) likelihood prevents testing SBI for 
convergence to an “optimal” posterior.

* The SBI can often be underconfident: Calibration required.
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Paper & codes soon 
to be made public!


