

Simulation Based Population Inference Galactic Binaries in LISA

Rahul **Srinivasan** Postdoc, SISSA, Italy

In collaboration with Enrico Barausse, Natalia Korsakova, Roberto Trotta

The Galactic Double White Dwarf Population

LISA

Figure from the LISA red book

The Galactic Double White Dwarf Population

A cocktail party of a few, loud, resolvable sources, and an overlapping, cacophonous, incoherent foreground.

The Galactic Double White Dwarf Population

Where lies the population signature: the few resolvable sources¹ or the many unresolvable sources²?

> ¹ Korol, Rossi, Barausse, MNRAS 483 no. 4 5518–5533 ² Smith et al 2020; 2004.09700

The Data

GPU-leveraged forward simulator

The Data

O(10⁶) frequency bins! Computational *prohibitive* likelihood evaluation. <u>Major bottleneck</u> for Bayesian samplers.

SBI might be a *necessity*.

Population Λ := $\rho_{\text{Distribution}}$ (Mass, Separation), N_{Sources}, Milky Way_{Scale}

Population Λ := $\rho_{\text{Distribution}}$ (Mass, Separation), N_{Sources}, Milky Way_{Scale} Source Θ := Mass, Separation, Sky-position, Distance Data \mathbf{D} := $\sum_{i} GW_{i} + n_{\text{LSIA}}$

Given examples of $\Lambda \rightarrow D$, SBI solves the *inverse problem* $D \rightarrow \Lambda$, i.e., $p(\Lambda | D, M_{simulator})$

Λ : Parameterizing the Population

Total DWD Number	:1
Primary DWD Mass Dist.	:2
Separation Dist.	:1
MW Disc	:2
MW Bulge	:2
LISA Noise Parameters	:2

Total

M₁ distribution

Separation Index

Data summary

A network with O(10⁶) input neurons is very memory intensive and data hungry. Need to summarize the data.

Our current prescription:

Linear fit of data within frequency batches Summary: fit and residual parameters.

Data reduction: $O(10^6) \rightarrow O(10^3)$

Data summary

Hz

Hz

Network Architecture

Features

Training the SBI

Galactic Double White Dwarf Population Inference

But, where lies the information?

Where's the population signature? the few resolvable sources or the many unresolvable sources ?

Paper & codes soon to be made public!

Caveats, caveats, caveats

- * The inference can only be as good as the simulator/model $p(\Lambda | D, M_{Simulator})$.
- * The inference can only be as good as the data summary.
- * The intractable (or at least hard-to-pose) likelihood prevents testing SBI for convergence to an "optimal" posterior.
- * The SBI can often be underconfident: Calibration required.

