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• What does a galaxy look like? 
How do we know?

Motivating Examples: Galaxies
Gendler et al., 2014
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• What does a galaxy look like? 
How do we know?

• What part of  the light comes from 
the central galaxy? How do we 
know?

• We want:
• A prior for galaxies: 

• Posterior sampling of  just the 
galaxy light: 

• We have: line-of-sight, noise

Motivating Examples: Galaxies
Koekemoer et al., 2007
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• What does a galaxy look like? 
How do we know?

• What part of  the light comes from 
the central galaxy? How do we 
know?

• We want:
• A prior for galaxies: 

• Posterior sampling of  just the 
galaxy light: 

• We have: line-of-sight, noise, and 
multi-resolution

Motivating Examples: Galaxies
Koekemoer et al., 2007
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Multi-View Source Separation 
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• Consider: 

• A noisy observation (of  a specific 
view – i.e. galaxies or randoms)…
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• Consider: 

• A noisy observation (of  a specific 
view – i.e. galaxies or randoms)…

• composed of  a linear mixture of  
independent sources.

• The mixture of  each source is given by 
a matrix that depends on the view, the 
source, and the specific sample.
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• Goals: 

• We aim to infer the individual prior 
distributions of  each source. 
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• Goals: 

• We aim to infer the individual prior 
distributions of  each source. 

• We then want to separate the sources 
by sampling from the joint posterior:



1. Flexible Bayesian prior that can capture our unknown source 
distributions

2. Ability to train that prior given incomplete, noisy data

3. Ability to disentangle multiple sources from the same observation

Ingredients
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• Start with observed samples and perturb them through a diffusion 
process given by the SDE:

• The reverse SDE is given by:

Review: Diffusion Models
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• Start with observed samples and perturb them through a diffusion 
process given by the SDE:

• The reverse SDE is given by:

• With enough perturbation, final timestep is equivalent to noise. 

• Integrating backwards with reverse SDE gives a sample from the original 
distribution. We just need the score. Train a model to estimate it.

Review: Diffusion Models
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Review: Diffusion Models as Priors

• What if  we want to condition on an observation? We need the score of  
the posterior:

• From Bayes rule:

• First term we already have, second term comes from integral:
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1. Flexible Bayesian prior that can capture our unknown source 
distributions

2. Ability to train that prior given incomplete, noisy data

3. Ability to disentangle multiple sources from the same observation

Ingredients
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Review: Diffusion Priors from Observations

6/19/2025 EUCAIF 2025 22

• In MVSS, we don’t know the prior, 
so we still can’t sample from the 
likelihood. 

Rozet et al., 2024
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1. Flexible Bayesian prior that can capture our unknown source 
distributions

2. Ability to train that prior given incomplete, noisy data

3. Ability to disentangle multiple sources from the same observation

Ingredients

6/19/2025 EUCAIF 2025 29



Joint Posterior Sampling with Diffusion Priors
Wagner-Carena, Akhmetzhanova, et al., submitted.

Observations Expectation Maximization
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1. Flexible Bayesian prior that can capture our unknown source 
distributions

2. Ability to train that prior given incomplete, noisy data

3. Ability to disentangle multiple sources from the same observation

Ingredients
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Image Data: Contrastive
Wagner-Carena, Akhmetzhanova, et al., submitted.
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Image Data: Contrastive

• Two views: 

1. Pure grass background

2. Mixture of  digits and grass background

• Assume we have noisy and 
incomplete data

• Goal: separate two source distributions

• Start by training initial grass distribution 
from first view, then train MNIST 
distribution using second view
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Image Data: Contrastive

• Two views: 

1. Pure grass background

2. Mixture of  digits and grass background

• Assume we have noisy and 
incomplete data

• Goal: separate two source distributions

• Start by training initial grass distribution 
from first view, then train MNIST 
distribution using second view

• Successfully disentangled sources!
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Galaxies: Contrastive

• Two views: 

1. Random foreground / background

2. Galaxies with the foreground / 
background

• Goal: separate two source 
distributions (galaxies and randoms)

Wagner-Carena, Akhmetzhanova, et al., submitted.
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Galaxies: Contrastive

• Two views: 

1. Random foreground / background

2. Galaxies with the foreground / 
background

• Goal: separate two source 
distributions (galaxies and randoms)

• Convincing separation!

• Not perfect: 
• Artifacts from random model

• Metrics to evaluate performance

Wagner-Carena, Akhmetzhanova, et al., submitted.
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Conclusions

• For astrophysics, pristine, isolated observations are rare; leveraging these 
datasets requires solving a source separation problem 

• We’ve presented a method that is effective even when:

• No source is ever individually observed (mixed sources)

• Observations are noisy and incomplete

• Resolution and mixing varies (i.e. different observatories)

• Diffusion models enable us to directly probe what our sources look like
• Data-driven priors form our next-generation sky surveys

• Statistically principled and interpretable posteriors
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Extra Slides
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1D Manifolds: Mixed

• Sources are two distinct 1D 
manifolds embedded in a 
5D space

• Observations are 2D 
random mixture of  the 
manifolds

• Want to disentangle both 
manifolds
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Wagner-Carena et al., in prep.
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1D Manifolds: Mixed

• We have samples from the 
two views and their 
corresponding mixing 
matrices
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1D Manifolds: Mixed

• Can disentangle the sources, 
even when no source is 
seen on its own.

• Outperforms baseline 
Gibbs sampling approach, 
even for much larger mixing 
fractions

• Works with significant 
information loss on 
individual observations.
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