A Data-Driven Prism: Multi-View Source Separation with Diffusion Model Priors

EUCAIF 2025

Sebastian Wagner-Carena

Aizhan Akhmetzhanova

Sydney Erickson

Gendler et al., 2014

Motivating Examples: Galaxies

• What does a galaxy look like? How do we know?

Motivating Examples: Galaxies

- What does a galaxy look like? How do we know?
- What part of the light comes from the **central galaxy**? **How** do we know?

Koekemoer et al., 2007

Motivating Examples: Galaxies

•				

Motivating Examples: Galaxies

- What does a galaxy look like? How do we know?
- What part of the light comes from the **central galaxy**? **How** do we know?
- We want:
 - A **prior** for galaxies: $p(\mathbf{x}_{gal})$
 - Posterior sampling of just the galaxy light: $p(\mathbf{x}_{gal}|\mathbf{y}_{obs})$
- We have: line-of-sight, noise

Motivating Examples: Galaxies

- What does a galaxy look like? How do we know?
- What part of the light comes from the **central galaxy**? **How** do we know?
- We want:
 - A **prior** for galaxies: $p(\mathbf{x}_{gal})$
 - **Posterior** sampling of just the galaxy light: $p(\mathbf{x}_{gal}|\mathbf{y}_{obs})$
- We have: line-of-sight, noise, and **multi-resolution**

$$\mathbf{y}_{i_{\alpha}}^{\alpha} = \left(\sum_{\beta=1}^{N_{s}} \mathbf{A}_{i_{\alpha}}^{\alpha\beta} \mathbf{x}_{i_{\alpha}}^{\beta}\right) + \eta_{i_{\alpha}}^{\alpha}$$
$$\alpha \in \{1, \dots, N_{\text{views}}\}$$
$$\beta \in \{1, \dots, N_{s}\}$$

- Consider:
 - A noisy observation (of a specific view i.e. galaxies or randoms)...

- Consider:
 - A noisy observation (of a specific view i.e. galaxies or randoms)...
 - composed of a linear mixture of **independent sources**.

- Consider:
 - A noisy observation (of a specific view i.e. galaxies or randoms)...
 - composed of a linear mixture of independent sources.
 - The mixture of each source is given by a matrix that depends on the view, the source, and the specific sample.

$$\begin{split} \mathbf{y}_{i_{\alpha}}^{\alpha} &= \left(\sum_{\beta=1}^{N_{s}} \mathbf{A}_{i_{\alpha}}^{\alpha\beta} \mathbf{x}_{i_{\alpha}}^{\beta}\right) + \eta_{i_{\alpha}}^{\alpha} \\ \alpha &\in \{1, \dots, N_{\text{views}}\} \\ \beta &\in \{1, \dots, N_{s}\} \end{split}$$

• Goals:

• We aim to infer the individual prior distributions of each source.

• Goals:

• We aim to infer the individual prior distributions of each source.

 $p(\mathbf{x}^{\beta})$

• We then want to separate the sources by sampling from the joint posterior:

 $p(\{\mathbf{x}^{\beta}\}|\mathbf{y}_{i}^{\alpha},\mathbf{A}_{i}^{lphaeta})$

Ingredients

- 1. Flexible Bayesian prior that can capture our unknown source distributions
- 2. Ability to train that prior given incomplete, noisy data
- 3. Ability to disentangle multiple sources from the same observation

Review: Diffusion Models

• Start with observed samples and perturb them through a diffusion process given by the SDE:

$$\mathrm{d}x_t = f_t x_t \mathrm{d}t + g_t \mathrm{d}w_t$$

• The reverse SDE is given by:

$$dx_t = \left[f_t x_t - g(t)^2 \nabla_{x_t} \log p(x_t)\right] dt + g(t) d\bar{w}_t$$

Review: Diffusion Models

- With enough perturbation, final timestep is equivalent to noise.
- Integrating backwards with reverse SDE gives a sample from the original distribution. We just need the **score**. Train a model to estimate it.

Song et al., 2021

Review: Diffusion Models as Priors

• What if we want to condition on an observation? We need the score of the posterior:

$$dx_t = \left[f_t x_t - g(t)^2 \nabla_{x_t} \log p(x_t | y)\right] dt + g(t) d\bar{w}_t$$

• From Bayes rule:

$$\nabla_{x_t} \log p(x_t|y) = \nabla_{x_t} \log p(x_t) + \nabla_{x_t} \log p(y|x_t).$$

• First term we already have, second term comes from integral:

$$p(y|x_t) = \int p(y|x_0)p(x_0|x_t) \mathrm{d}x_0$$

Ingredients

- 1. Flexible Bayesian prior that can capture our unknown source distributions
- 2. Ability to train that prior given incomplete, noisy data
- 3. Ability to disentangle multiple sources from the same observation

Review: Diffusion Priors from Observations

• In MVSS, we don't know the prior, so we still can't sample from the likelihood.

- In MVSS, we don't know the prior, so we still can't sample from the likelihood. The solution is Expectation-Maximization:
 - 1. Start from an initial diffusion model

- In MVSS, we don't know the prior, so we still can't sample from the likelihood. The solution is Expectation-Maximization:
 - 1. Start from an initial diffusion model
 - 2. Expectation: Sample from the posterior of your observations given current diffusion model

- In MVSS, we don't know the prior, so we still can't sample from the likelihood. The solution is Expectation-Maximization:
 - 1. Start from an initial diffusion model
 - 2. Expectation: Sample from the posterior of your observations given current diffusion model
 - **3.** Maximization: Fit the diffusion model to posterior samples

- In MVSS, we don't know the prior, so we still can't sample from the likelihood. The solution is Expectation-Maximization:
 - 1. Start from an initial diffusion model
 - 2. Expectation: Sample from the posterior of your observations given current diffusion model
 - **3.** Maximization: Fit the diffusion model to posterior samples
 - 4. Return to step 2 until converged

- In MVSS, we don't know the prior, so we still can't sample from the likelihood. The solution is Expectation-Maximization:
 - 1. Start from an initial diffusion model
 - 2. Expectation: Sample from the posterior of your observations given current diffusion model
 - **3.** Maximization: Fit the diffusion model to posterior samples
 - 4. Return to step 2 until converged

- In MVSS, we don't know the prior, so we still can't sample from the likelihood. The solution is Expectation-Maximization:
 - 1. Start from an initial diffusion model
 - 2. Expectation: Sample from the posterior of your observations given current diffusion model
 - **3.** Maximization: Fit the diffusion model to posterior samples
 - 4. Return to step 2 until converged

Ingredients

- 1. Flexible Bayesian prior that can capture our unknown source distributions
- 2. Ability to train that prior given incomplete, noisy data
- 3. Ability to disentangle multiple sources from the same observation

Joint Posterior Sampling with Diffusion Priors

Observations

Expectation

Maximization

Joint Posterior Sampling with Diffusion Priors

Observations

Expectation

Maximization

Joint Posterior Sampling with Diffusion Priors

Joint Posterior Sampling with Diffusion Priors

Joint Posterior Sampling with Diffusion Priors

Joint Posterior Sampling with Diffusion Priors

Joint Posterior Sampling with Diffusion Priors

Ingredients

- 1. Flexible Bayesian prior that can capture our unknown source distributions
- 2. Ability to train that prior given incomplete, noisy data
- 3. Ability to disentangle multiple sources from the same observation

Image Data: Contrastive

y^1 Examples

y^2 Examples

Image Data: Contrastive

- Two views:
 - 1. Pure grass background
 - 2. Mixture of digits and grass background
- Assume we have **noisy** and **incomplete** data
- Goal: separate two source distributions
 - Start by training initial grass distribution from first view, then train MNIST distribution using second view

Sample

 x^2

Image Data: Contrastive

- Two views:
 - 1. Pure grass background
 - 2. Mixture of digits and grass background
- Assume we have **noisy** and **incomplete** data
- Goal: separate two source distributions
 - Start by training initial grass distribution from first view, then train MNIST distribution using second view
- Successfully disentangled sources!

Epoch 1

Galaxies: Contrastive

- Two views:
 - 1. Random foreground / background
 - 2. Galaxies with the foreground / background
- Goal: separate two source distributions (galaxies and randoms)

Random Posterior

Galaxy Posterior

Galaxies: Contrastive

- Two views:
 - 1. Random foreground / background
 - 2. Galaxies with the foreground / background
- **Goal:** separate two source distributions (galaxies and randoms)
- Convincing separation!
 - Not perfect:
 - Artifacts from random model
 - Metrics to evaluate performance

Conclusions

- For astrophysics, pristine, isolated observations are rare; leveraging these datasets requires solving a **source separation problem**
- We've presented a method that is **effective** even when:
 - No source is ever individually observed (mixed sources)
 - Observations are noisy and incomplete
 - Resolution and mixing varies (i.e. different observatories)
- Diffusion models enable us to directly probe what our sources look like
 - Data-driven priors form our next-generation sky surveys
 - Statistically principled and interpretable posteriors

Extra Slides

- Sources are two distinct 1D manifolds embedded in a 5D space
- Observations are 2D random mixture of the manifolds
- Want to disentangle both manifolds

$$\begin{aligned} \mathbf{y}_{i_{\alpha}}^{\alpha} &= \mathbf{A}_{i_{\alpha}} \left(\sum_{\beta=1}^{N_{s}} c^{\alpha\beta} \mathbf{x}_{i_{\alpha}}^{\beta} \right) + \eta_{i_{\alpha}}^{\alpha} \\ c^{\alpha\beta} &= \begin{cases} 1 & \text{if } \alpha = \beta \\ f_{\text{mix}} & \text{if } \alpha \neq \beta \end{cases} \\ N_{\text{view}} &\geq N_{s} \end{aligned}$$

• We have samples from the two views and their corresponding mixing matrices

Wagner-Carena et al., in prep.

1D Manifolds: Mixed

6/19/2025

- Can disentangle the sources, even when **no source is seen on its own**.
- Outperforms baseline Gibbs sampling approach, even for much larger mixing fractions
- Works with **significant information loss** on individual observations.

