
Learning to Optimize Cosmic Initial Conditions with 
Non-Differentiable Structure Formation Models

Learning the Universe 
Collaboration

Simons Foundation

Ludvig Doeser,  
European AI for Fundamental Physics Conference 2025 (Cagliari, Sardinia, Italy) 
Simulations & Generative Modelling

Doeser et al. 2025 
arXiv: 2502.13243



Ludvig Doeser,  
European AI for Fundamental Physics Conference 2025 (Cagliari, Sardinia, Italy) 
Simulations & Generative Modelling

Learning to Optimize Cosmic Initial Conditions with 
Non-Differentiable Structure Formation Models

Learning the Universe 
Collaboration

Simons Foundation

Needed to model next-generation data!



Learning to Optimize Cosmic Initial Conditions with 
Non-Differentiable Structure Formation Models

Learning the Universe 
Collaboration

Simons Foundation

Ludvig Doeser,  
European AI for Fundamental Physics Conference 2025 (Cagliari, Sardinia, Italy) 
Simulations & Generative Modelling

Rigorous test of cosmology!

Needed to model next-generation data!



Ludvig Doeser,  
European AI for Fundamental Physics Conference 2025 (Cagliari, Sardinia, Italy) 
Simulations & Generative Modelling

Learning to Optimize Cosmic Initial Conditions with 
Non-Differentiable Structure Formation Models

Learning the Universe 
Collaboration

Simons Foundation

Needed to model next-generation data!

Rigorous test of cosmology!Leveraging neural networks



Learning to Optimize Cosmic Initial Conditions with 
Non-Differentiable Structure Formation Models

Needed to model next-generation data!1

5



Image credit: LSST

Image credit: ESA

Large Synoptic Survey Telescope

Euclid Spacecraft
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Cosmology is becoming an increasingly data-driven science

Data challenges:  
 to  galaxies 

Small-scales  
Large volumes 

105 109

Analysis of galaxy 
clustering at field-level 

is here

https://www.lsst.org/gallery/telescope-rendering-2013
https://www.esa.int/Science_Exploration/Space_Science/Euclid_overview


Initial conditions Dark-matter  
density Haloes/Galaxies 

Current analysis of galaxy clustering:

Field-level analysis for optimal information extraction
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• To truly test cosmology, we must fit our state-of-the-art models to their limits and look where they fail 
• In particular at smaller non-linear scales where most information lies

N-body simulation  
non-differentiableImprovements:

Halo finder, HOD, 
hydrodynamics etc  
non-differentiable

7

Approximate 
model

Approximate 
galaxy bias
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Needed to model next-generation data!

Rigorous test of cosmology!
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The seeds from which all observable structures originate 

Cosmic initial conditions =  
Gaussian field encoding the density 


perturbations in Early Universe

Large-scale structure of galaxies 

of the Universe today 

13.8 billion years



Credit: Stuart McAlpine 
(stuartmcalpine.com) 

https://stuartmcalpine.com/
https://stuartmcalpine.com/
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The seeds from which all observable structures originate 

Cosmic initial conditions Large-scale structure 

Inference13.8 billion years
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Field-level analysis: Making use of numerical simulations

Structure Formation Model M Data modelPrior model

αΩ

Given a model  and cosmo. params , find initial conditions  that evolve into the observed 3D galaxy dist. 
BORG (Bayesian Origin Reconstruction from Galaxies)

M Ω x

Similar to back-propagation in neural networks: need differentiable model

Dark-matter-only
Galaxy 

bias

Statistical inference: Update initial conditions to better match the data 
dim!

1283 ∼ 106

Jasche & Wandelt 2014, J. Jasche, F. Leclercq, B. D. Wandelt 2015, G. Lavaux, J. 
Jasche, F. Leclercq 2019, G. Lavaux, J. Jasche 2016, Jasche & Lavaux 2019

https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..894J/abstract
http://dx.doi.org/10.1088/1475-7516/2015/01/036
http://arxiv.org/pdf/1909.06396
http://arxiv.org/pdf/1909.06396
http://arxiv.org/pdf/1909.06396
http://arxiv.org/pdf/1909.06396
http://dx.doi.org/10.1093/mnras/stv2499
https://ui.adsabs.harvard.edu/abs/2019A&A...625A..64J/abstract


Initial conditions (ICs) of our Universe  full dynamical formation history of densities and velocities 

Enables creating a physics laboratory, a Digital Twin 
• Simultaneously fit all observed structures and galaxies

→
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Inferring the initial conditions is a rigorous test of cosmology
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Inferring the initial conditions is a rigorous test of cosmology
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Data: Galaxies

Model: simulation  
from inferred ICs

• Intricate properties of individual clusters 
• Rarity of massive clusters 
• Velocity reconstructions (e.g. useful for Hubble tension) 
• Anomalous superstructures (“Great Wall”, “Giant Arc” etc) 
• Formation of and dynamics around our Local Group

McAlpine et 
al. 2025
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Inferring the initial conditions is a rigorous test of cosmology

M��������-L����

C���

2M++ C��������

Wempe et al. 
2024

Data: Galaxies

Model: simulation  
from inferred ICs

McAlpine et 
al. 2025
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Using state-of-the-art simulations via Neural networks

• Neural network can be used either as (1) predictor (emulator) or (2) search engine (optimizer) 
• As field-level emulator to speed up state-of-the-art simulations  at non-linear scales𝒮

• How to use state-of-the-art simulations without approximation?𝒮

See Drew Jamieson’s 
highlighted talk tomorrow

Doeser, Jamieson et al. 2024 
Jamieson et al. 2022, 2024

α
Ω

𝒮NN ≈ 𝒮

V-Net 
NN 

Model

Speed improvement factor 100 with percent-level accuracy 
and is by design differentiable



V-Net 
NN 

Model
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Learning the Universe by Learning to Optimize (LULO)

V-Net 
NN 

Model

• Use of neural optimizer: We speed up the inference/optimization pipeline instead of the simulator!



V-Net 
NN 

Model
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Learning the Universe by Learning to Optimize (LULO)

No ML in physics 
modelling

Main concepts: 
• Use NN as optimizer instead of predictor 
• Full physics prediction in the loop  
• Non-differentiable models allowed 

V-Net 
NN 

Model
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Learning how to map  to Δd Δx
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Neural network architecture: V-NetTraining data generation
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This work: 
(1) Halo field

(2) Mass-weighted 

halo field
V-Net 

NN 
Model
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Generating training data to map  to Δd Δx

Δd

−

=

Δx

=

−

 

GADGET-IV
  xa da

AHF

 db
GADGET-IV AHF

  xb

𝒫

Collect 5000 pairs 
{Δd, Δx}

Ensures a 
perturbed initial 
conditions field 
with same mean 

and variance

N-body simulation Halo finder
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Reconstructing the initial conditions with LULO

Ludvig Doeser
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Reconstruction after  opt steps (  simulations)22 96
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Summary & Conclusions

Next-generation galaxy clustering surveys are here 
• Capability to analyse data at non-linear scales will limit knowledge gains  

Inference technology 
• Field-level inference of initial conditions offers information optimality 
• Complete characterisation of cosmic structure without compression 

• 1) Non-linear model of structure formation, 2) Entire model and inference at the field-level 
• Rigorous test of the cosmological model 

Accelerating cosmological inference with deep learning 
• Neural model: increasing efficiency of non-linear simulators of structure formation 
• Neural optimizer: providing a gradient-free framework to incorporate non-differentiable simulators

Promising path forward 
towards analyzing current-
generation galaxy surveys 

at non-linear scales 

arXiv: 2312.09271 

arXiv: 2502.13243 
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Monitoring the decreasing data discrepancy 
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Reconstruction of initial conditions
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Reconstruction of initial conditions

These scales 
collapse below 
data resolution 
• Non-linear 

modelling 
required to 
explain linear 
regions in the 
initial 
conditions
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Reconstructed halos
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Generalizability to any initial conditions (here  recon.)10
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