Ludvig Doeser, **European AI for Fundamental Physics Conference 2025 (Cagliari, Sardinia, Italy)** Simulations & Generative Modelling

Swedish **Research Council**

Doeser et al. 2025 arXiv: 2502.13243

Learning the Universe **Collaboration**

Ludvig Doeser, **European AI for Fundamental Physics Conference 2025 (Cagliari, Sardinia, Italy)** Simulations & Generative Modelling

Swedish **Research Council**

Needed to model next-generation data!

Learning the Universe **Collaboration**

Ludvig Doeser, **European AI for Fundamental Physics Conference 2025 (Cagliari, Sardinia, Italy)** Simulations & Generative Modelling

Swedish **Research Council**

Rigorous test of cosmology!

Needed to model next-generation data!

Learning the Universe **Collaboration**

Leveraging neural networks Learning to Optimize Cosmic Initial Conditions with **Non-Differentiable Structure Formation Models**

Ludvig Doeser, **European AI for Fundamental Physics Conference 2025 (Cagliari, Sardinia, Italy)** Simulations & Generative Modelling

Swedish **Research Council**

Rigorous test of cosmology!

Needed to model next-generation data!

Learning the Universe **Collaboration**

Needed to model next-generation data!

5

Cosmology is becoming an increasingly data-driven science

Field-level analysis for optimal information extraction

- In particular at smaller non-linear scales where most information lies

Current analysis of galaxy clustering:

Initial conditions

Approximate model

Improvements:

N-body simulation non-differentiable

Ludvig Doeser

• To truly test cosmology, we must fit our state-of-the-art models to their limits and look where they fail

non-differentiable

2 **Rigorous test of cosmology!**

Needed to model next-generation data!

8

The seeds from which all observable structures originate

Cosmic initial conditions = Gaussian field encoding the density perturbations in Early Universe

Ludvig Doeser

Large-scale structure of galaxies of the Universe today

t_{age} = 0.5 Gyr Redshift = 10.11

<u>Credit: Stuart McAlpine</u> (stuartmcalpine.com)

The seeds from which all observable structures originate

Cosmic initial conditions

Ludvig Doeser

Large-scale structure

Field-level analysis: Making use of numerical simulations

Jasche & Wandelt 2014, J. Jasche, F. Leclercq, B. D. Wandelt 2015, G. Lavaux, J. Jasche, F. Leclercq 2019, G. Lavaux, J. Jasche 2016, Jasche & Lavaux 2019 BORG (Bayesian Origin Reconstruction from Galaxies)

Inferring the initial conditions is a rigorous test of cosmology

Initial conditions (ICs) of our Universe \rightarrow full dynamical formation history of densities and velocities

Enables creating a physics laboratory, a **Digital Twin**

• Simultaneously fit all observed structures and galaxies

Inferring the initial conditions is a rigorous test of cosmology

Initial conditions (ICs) of our Universe \rightarrow full dynamical formation history

Enables creating a physics laboratory, a **Digital Twin**

- Simultaneously fit all observed structures and galaxies
- Intricate properties of individual clusters
- Rarity of massive clusters
- Velocity reconstructions (e.g. useful for Hubble tension)
- Anomalous superstructures ("Great Wall", "Giant Arc" etc)
- Formation of and dynamics around our Local Group

Inferring the initial conditions is a rigorous test of cosmology

Enables creating a physics laboratory, a **Digital Twin**

- Simultaneously fit all observed structures and galaxies
- Intricate properties of individual clusters
- Rarity of massive clusters •
- Velocity reconstructions (e.g. useful for Hubble tension)
- Anomalous superstructures ("Great Wall", "Giant Arc" etc)
- Formation of and dynamics around our Local Group

Wempe et al. <u>2024</u>

- **Rigorous test of cosmology!**
- Leveraging neural networks

2 Needed to model next-generation data!

Using state-of-the-art simulations via Neural networks

- As field-level emulator to speed up state-of-the-art simulations \mathcal{S} at non-linear scales

• How to use state-of-the-art simulations \mathcal{S} without approximation?

• Neural network can be used either as (1) predictor (emulator) or (2) search engine (optimizer)

Learning the Universe by Learning to Optimize (LULO)

Ludvig Doeser

• Use of **neural optimizer:** We speed up the inference/optimization pipeline instead of the simulator!

Learning the Universe by Learning to Optimize (LULO)

Learning how to map Δd to Δx

{Δ*x*} © O V-Net NN Model *L* =

Cosine similarity loss $L = 1 - \frac{\Delta x_{\text{true}}^{\top} \Delta x_{\text{pred}}}{||\Delta x_{\text{true}}||||\Delta x_{\text{pred}}||}$

ution enation ampling pling r of channels

Generating training data to map Δd to Δx

Ensures a perturbed initial conditions field with same mean and variance

Ludvig Doeser

Reconstructing the initial conditions with LULO

Reconstruction after 22 opt steps (96 simulations)

Summary & Conclusions

Next-generation galaxy clustering surveys are here

Capability to analyse data at <u>non-linear</u> scales will limit knowledge gains

Inference technology

- Field-level inference of initial conditions offers information optimality
- Complete characterisation of cosmic structure without compression
 - 1) Non-linear model of structure formation, 2) Entire model and inference at the field-level
- Rigorous test of the cosmological model

Accelerating cosmological inference with deep learning

- Neural model: increasing efficiency of non-linear simulators of structure formation
- Neural optimizer: providing a gradient-free framework to incorporate non-differentiable simulators

Promising path forward towards analyzing currentgeneration galaxy surveys at non-linear scales

arXiv: 2312.09271

arXiv: 2502.13243

Monitoring the decreasing data discrepancy

Ludvig Doeser

 $N_{
m simulations}$

Reconstruction of initial conditions

Reconstruction of initial conditions

Halo mass function

Ludvig Doeser

Derived properties: halo velocities

Generalizability to any initial conditions (here 10 recon.)

