BUILDING FOUNDATION MODELS FOR BLACK

Presentation by Renze Oosterhuis

EUCAIFCon, Cagliari - June 19, 2025

Event Horizon Telescope Collaboration (EHTC)

Combine several telescopes into an 'earth-sized' VLBI array

Credit: Lindy Blackburn

Parameter inference

- Black holes are fully described by mass, spin, charge (no hair theorem)
- M ~ 10^9 Msun (inferred from shadow size)
- Spin ~ ...

Credit: EHTC et al

Parameter inference from EHT data

Inference by simulations

- The full simulation library: •
 - Different spins (a) ٠
 - Plasma parameters •
 - Accretion regimes •
 - Simulation codes •
- ML-based parameter inference networks have been ٠ published (vd Gucht+19, Janssen+25)

Credit: EHTC et al

GENERAL RELATIVISTIC MAGNETO-HYDRO DYNAMICS (GRMHD)

- Essential in comparing observations to theory
- Evolve matter and magnetic fields in curved spacetime
- Only able to sparsely explore parameter ranges
- High computational costs (typically ~100K CPUh per simulation)
- Can we lift these 'shortcomings' using machine learning?

Credit: Y. Mizuno (2022)

A unifying black hole foundation model

The holy grail: unify all black hole physics into one **foundation model**

- Reduce computational costs by orders of magnitude:
 - Run simulations for longer / with higher precision
- Interpolate between simulation pipelines:
 - Interpolate between different (spin-) parameters of black holes
 - Combine large-scale jet MHD with small-scale GRMHD
 - Maneuver between grid-/particle-based simulations?
- Perform faster and better parameter interference of EHT data

 $r(r_g)$

Credit: Vos et al. (2024)

FOUNDATION MODELS

- Machine learning models pretrained on vast datasets, later finetuned on more specific tasks
- Applicable to wide usage of cases
 - Large-Language models, text-to-image models, MusicGen
- Fairly low computational costs to evaluate once trained

APPLYING FOUNDATION MODELS TO PHYSICAL SYSTEMS

- Aurora: A foundation model for the earth system
- Very similar in data size and structure to GRMHD
- Immense computational speedup (× ~5000)
- Pretrained on low resolution (0.25°) data, later finetuned on high resolution (0.1°) data

Credit: Bodnar et al. (2024)

UNIVERSAL PHYSICS TRANSFORMERS (UPTS)

- Using one universal (machine-) learning paradigm for different spatio-temporal problems
- Does not rely on grid/particle based structures
- High efficiency due to reduced latent space modelling and leveraging scalability of transformers

Results

- UPT adapted to train on 2d/3d GRMHD datasets, with an arbitrary number of parameters
- We can simulate global dynamics, except for small turbulences
- Bottlenecks:
 - Training data
 - Error metric
 - Architecture

Stochastic approach: GANs

- Use a binary classifier to distinguish between real/fake images
- Use the classifier output in the loss function of the generator

Credit: Sharma (2025)

Results for GANs

- More dynamical behavior ٠
- Generator can easily 'fool' the discriminator •

Conclusions and further steps

- We are able to model large scale GRMHD dynamics with UPTs
- However, modelling small turbulences is not possible with the limited resources we have
- Different ML architectures are necessary to model turbulence in GRMHD:
 - GANs
 - Discrete tokenization
 - (Tensorized) FNOs
 - ...

Thank you for your attention!

