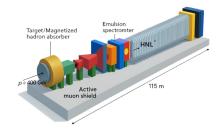
Efficient Design of the SHiP's Muon Shield Through Machine Learning and High Performance Computing

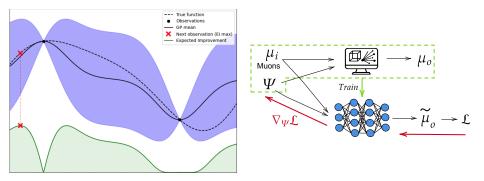
Luís Felipe P. Cattelan¹, Shah Rukh Qasim¹, Guglielmo Frisella^{1,2}, Melvin Liebsch², Massimiliano Ferro-Luzzi², Patrick Owen¹, Nicola Serra¹

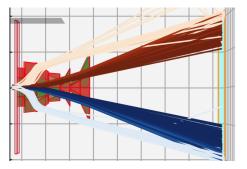
 ${}^{1}\mathsf{Physik-Institut, University of Zurich} \\ {}^{2}\mathsf{CERN}$


Efficient Design of the SHiP's Muon Shield

SHiP: Search for Hidden Particles at CERN

Muon Shield: Blocks muons from reaching the detector.


Challenge:

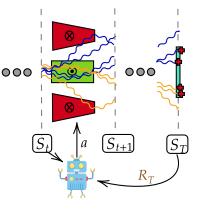

- Complex, high-dimensional design
- Expensive simulations
- Non-differentiable, stochastic

Machine Learning and HPC

- HPC: GPUs and distributed computing
- Bayesian optimization: Smart parameter search
- Surrogate models: Fast, differentiable approximations

- Muon flux: $10^{10} \rightarrow 10^4$
- Optimization time: months \rightarrow days
- Engineering constraints included
- More realistic simulations
- Refined cost estimation

HPC + ML successfully addressed Muon Shield design challenge!


Next Steps: Reinforcement Learning

Why RL?

- Discrete, sequential design
- Joint optimization of sub-systems
- Non-differentiable, flexible

Framework:

- State: muon flux, layout
- Action: place/configure component
- Reward: suppression cost

Thank you!

lfp.cattelan@cern.ch

3 N 3