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A Multi-Scale Challenge: From Microscopic Physics to MacroscopicA Multi-Scale Challenge: From Microscopic Physics to Macroscopic
SignalsSignals

The Physics ProblemThe Physics Problem

Next-generation particle detectors, like the TimeSPOT 4D sensor, must

measure particle trajectories with extreme precision in both space and

time (<50 picoseconds).

Our “ground truth” for R&D is a detailed physics simulation that models

charge transport within silicon (via engines like Geant4 & TCoDe).

The Computational BottleneckThe Computational Bottleneck

This high-fidelity simulation is computationally intractable:

1 particle hit ≈ 1 second of CPU time.

This prevents us from generating the billions of events needed for

research.

The ML Task: Learn the mapping from microscopic interactions (UV)

— like a particle’s path and energy loss—to emergent detector signals

(IR), such as total charge and signal timing.

The TimeSPOT sensor: a complex physical system.

The simulation cost is a critical roadblock to scientific progress.
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Our Approach: Compressing Physics with a Neural SurrogateOur Approach: Compressing Physics with a Neural Surrogate

Learning an Effective FunctionLearning an Effective Function

We trained a deep Multi-Layer Perceptron to act as a surrogate for the slow
physics engine.

Inputs: ~12 features describing particle kinematics & hit geometry.

Outputs: The two key detector observables:

1. Total Collected Charge

2. Temporal Center of Gravity (Timing)

Architecture Rationale: A symmetric “hourglass” MLP first projects

inputs into a high-dimensional latent space to capture complex physical

correlations, then compresses this representation to the target outputs.

From Python Research to C++ ProductionFrom Python Research to C++ Production

Trained in JAX, exported to the standard ONNX format.

ROOT’s SOFIE tool then auto-generates highly-optimized C++ code,

creating a dependency-free engine for direct integration into our C++-

based scientific software stack.

Replace the slow physics engine with a fast, learned function.

A robust pipeline from research to production.
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High-Fidelity Results & The Path ForwardHigh-Fidelity Results & The Path Forward

1. Accuracy: The Model is Unbiased1. Accuracy: The Model is Unbiased

The model faithfully reproduces the ground truth simulation.

Charge Prediction: R² > 0.99

Timing Prediction: R² > 0.93

Residuals are centered at zero, indicating no systematic bias.

2. Speed: A Transformative Leap2. Speed: A Transformative Leap

The surrogate is ~100,000x faster than the full simulation.

This turns a computational bottleneck into an on-demand tool, unlocking

new research possibilities.

The Path Forward: Modeling InteractionsThe Path Forward: Modeling Interactions

Next Step: Model inter-pixel charge sharing. This requires moving from a

simple MLP to a Graph Neural Network (GNN) to capture the system’s

topological structure.

Come see my Poster [Session A] for architecture details, full validation

plots, and a discussion on our software integration!

Unbiased predictions for both charge and timing.

A massive ~100,000x speedup.
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