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Gets harder the more you have to scan
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ATLAS:

http://atlas.ch

Run: 280673
Event: 1273922482
2015-09-29 15:32:53 CEST
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Our data is impenetrable by the human brain
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And we don’t know what we're looking for
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There is no
universally best
goodness of fit

test
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https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf

Trading power of test for coverage

Possible new physics
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Machine Learning-Driven Anomaly
Detection in Dijet Events with ATLAS

based on [1] (submitted to Phys. Review D)
Tobias Golling® and Dennis Noll** for the ATLAS Collaboration

Motivation

* Want to find new physics in LHC collider data

- Many more BSM models than possible analyses

+ Anomaly detection for resonant signals using machine learning (ML)
*+ Technique: Signal agnostic bump-hunt using many jet features

* Related analyses: [2, 3]
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Dataset

Using ATLAS data recorded 2015-2018 (139 fb-1)
Target events with = 2 large radius jets (anti-kt, R=1) with low Ay
* Used jet features (T): Masses (m), Substructure (t21, Ta2)
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Analysis Strategy

1. Definition of Regions

2. Background Estimation 3. Signal Classification

SR
SB
e Background
x  Signal
Estimate

* Multi-dim. *+ Cl

without Labels (CWola) classifier [6]

* Scan over my range

* Signal region (SR) and bkg.
regions (SB) below & above
have 600 GeV width each

+ Step size: 300 GeV

* 8 regions in 2.6-5.0 TeV

estimate (mu, T)

* Use 2 ML-driven methods:
- SALAD [4]
- CURTAINS [5]

* Trained between data and background estimation
* Ensemble of 10 networks
* Cut on classifier increases signal purity (e=2, 10%)

4. Bump Hunt
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« Fit exponential in side bands
(up to 4-param exponential,
iterative until good x?)

* Compare sum of counts in
signal region (SR)

Inference & Results

Uncertainties (in order): Signal Agnostic
* Background fit

* Network ensemble
Validation
* Performed on ML-generated

* Observed significance of: 2 methods, 2

* Statistics efficiencies, 7 my, regions, 3 feature sets

* Largest significance is 1.240 (1.260) & local
deficit of —2.980 (-2.540) for SALAD (CURTAINSs)

Signal Specific

* Set limits @ 95% CLs to 20 investigated signal models
* Analysis has a broad performance on many models

* Similar performance for SALAD and CURTAINs

« Different feature sets have different sensitivity (more not

always better) - scan over feature sets is one of the

background-only dataset strengths of this analysis
= Successful for my; > 2900 GeV LAS
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Looking forward to
discussing with you in
Poster Session B
tomorrow !
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