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An LLM-like Model Tokenization strategy

Output
Probabilities c ey : :
‘We would like to build an LLM-like model that correctly L The initial data set (Dark Machines Collaboration [2]),
reconstructs a «hidden» particle from an event. Lm‘tear (:Ontami| for eaChf e\éent andlfor U[i) JE:IO 18 partrI]CleS of that
. / event, the type of the particle including it rge, It
-We are using encoder-only transformers, that use (sequences r A ’ YPE OTINE pTLItie INCIUCING 15 Chdrge, 1> P, @
. . Add & Norm and n, and the missing transverse energy of the event (MET)
of) tokens as input(s) and have ~260 trainable parameters. Food . . .
| | | Forward and its azimutal angle(METphi). The events are 0-padded so all
N Add & Norm . : . .
Goal: inputs[ Batches of events ] [ Batches of events ] ~ Batches of events h’;\‘*t'lt“'}?_ead -SInce our model needs J.[O SSllEges lnpUt’ the partl(:le phyS|CS
! ] — dataset had to be tokenized and the 0-pads are masked.
LLM-like models | | ' & J
| v t
Spatr)se Cat.crosz__e:tg {Score reconstruction} [ Score ] Score reconstruction | E,?i;g;zl ®_<?
e ait;v;eansr(); tlc(:kzn 4VECT (masked 1by1) | | reconstruction MET | | METphi ] Input “\We tried several approaches to tokenize [ o J
R “a I Embedding ] ) nput sequence
A Ture § o | the events by hand, including the
0 Inputs tokenization of the 4-vectors of a particle.

The example above is obtained by

4VECT Predictions - in event 10733 (background) Continuous Latent |

-During training and inference, we N e sl categorizing each property of a particle in [ Representation _
mask one particle from that event to | oo 5 bins. [ =
g g o VectorQuantlzatlon e,
do a next-token-like prediction. z \We are Current[y trymg to do a g
-The output of our model is a : tokenization with VQ-VAE to see if it [ F?fp‘f,fsfnﬁztf;f Jﬁg
two-dimensional tensor containing | improves the performace of our model. (codebogindices) 2
for each particle of the input event, -Special attention is also given to the Decoder Network S
the probabilities for each token to W ﬂ— ——— selection of information given to the model |———*——
represent that particle. e S 8 (MET, METphi, number of jets, of leptons ... | “reouence |

4=top, ttW, ttWW, tiZ, itH  |hference and Anomaly detection

-4-top-quark events decay into 4 to 12 jets and 0 to
4 charged leptons. Its signature shares similarities

, -The language model is trained exclusively on background-only events, where the
with a ttW or a ttWW event.

objective is to reconstruct a deliberately masked particle within each event. This

-It is also similar to the signature of a ttZ event, since task forces the model to learn the underlying structure of standard model
N \\ Jet / e | Zbosons decay mostly into processes, effectively capturing the correlations and distributions typical of
o | I/E S Z__,. o Jetsor lép.ton!ca.lly. background physics.
© w7 bjj,, -Lastly, it Is similar to the -At inference, the trained model is applied to events from the control region (CR),
2 9~ = ' [ signature of a ttH event, as which includes both background and a small admixture of signal-like events. For
® © HH%E & & & | (heiggs boson can decay each event, the model predicts the masked particle and assigns a reconstruction
, /to NN Into 2 jets, a W-or a Z-palr. score that reflects how consistent the predicted particle is with background-like
%/Wf ,;\ NT | ttw, ttWW, ttZ & ttH will behavior.
o7 8 X. \\\\\ C\\\ e | be the background events. -An anomaly threshold is defined by
W G \,et Jet Comparison between diflrent anomaly cetection metnoss | S€ECLING @ score that best separates CR

background from CR signal, based on their
reconstruction score distributions.

-Finally, we apply the model to events from

0.8 1

ATLAS detector

0.6 1

-ATLAS is one of the four detectors of the LHC at CERN. NN s W i) the signal region (SR). iVen]}Squ'tT h
: : Soal | vauul (DAUgsvggar;,) S reconstruction scores that ratlt betow the
-The dataset, from the Dark Machines Collaboration (2], - | ety .
. : . . 0/ anomaly threshold are classified as
s from simulated proton-proton collisions inside the ol f/F —g;gccgfgm anomalies, and are treated as signal
ATLAS detector (as it was during RUN 2) and at the )/ — seerun ’
center of mass energy of 13 TeV. v
[3]
Histograms of the average scores of reconstructions of all 4VECT of an event
— Encoding 5+ 5binslfor MET/METphi, event=[4VECT1, 4VECT2, ..., MET, METphi]
| : [ Background
0.0175 [ Signal - 4top
—--- Optimal Threshold = 4.4447
n:_oo 0.0150
n:-l_oo éoioon-
towards LHCb ROC-AUC = 0.6557
centerof the LHC 0.0000 4 ; : : o " ;
AT ;AS Coordinate SyStem Score(Sparse Categorical Crossentropy)
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An LLM-like Model Tokenization strategy

Output
Probabilities c ey : :
‘We would like to build an LLM-like model that correctly L The initial data set (Dark Machines Collaboration [2]),
reconstructs a «hidden» particle from an event. Lm‘tear (:Ontami| for eaChf e\éent andlfor U[i) JE:IO 18 partrI]CleS of that
. / event, the type of the particle including it rge, It
-We are using encoder-only transformers, that use (sequences r A ’ YPE OTINE pTLItie INCIUCING 15 Chdrge, 1> P, @
. . Add & Norm and n, and the missing transverse energy of the event (MET)
of) tokens as input(s) and have ~260 trainable parameters. Food . . .
| | | Forward and its azimutal angle(METphi). The events are 0-padded so all
N Add & Norm . : . .
Goal: inputs[ Batches of events ] [ Batches of events ] ~ Batches of events h’;\‘*t'lt“'}?_ead -SInce our model needs J.[O SSllEges lnpUt’ the partl(:le phyS|CS
! ] — dataset had to be tokenized and the 0-pads are masked.
LLM-like models | | ' & J
| v t
Spatr)se Cat.crosz__e:tg {Score reconstruction} [ Score ] Score reconstruction | E,?i;g;zl ®_<?
e ait;v;eansr(); tlc(:kzn 4VECT (masked 1by1) | | reconstruction MET | | METphi ] Input “\We tried several approaches to tokenize [ o J
R “a I Embedding ] ) nput sequence
A Ture § o | the events by hand, including the
0 Inputs tokenization of the 4-vectors of a particle.

The example above is obtained by

4VECT Predictions - in event 10733 (background) Continuous Latent |

-During training and inference, we N e sl categorizing each property of a particle in [ Representation _
mask one particle from that event to | oo 5 bins. [ =
g g o VectorQuantlzatlon e,
do a next-token-like prediction. z \We are Current[y trymg to do a g
-The output of our model is a : tokenization with VQ-VAE to see if it [ F?fp‘f,fsfnﬁztf;f Jﬁg
two-dimensional tensor containing | improves the performace of our model. (codebogindices) 2
for each particle of the input event, -Special attention is also given to the Decoder Network S
the probabilities for each token to W ﬂ— ——— selection of information given to the model |———*——
represent that particle. e S 8 (MET, METphi, number of jets, of leptons ... | “reouence |

4=top, ttW, tTWW, tiZ, itH  |hference and Anomaly detection

-4-top-quark events decay into 4 to 12 jets and 0 to
4 charged leptons. Its signature shares similarities

, -The language model is trained exclusively on background-only events, where the
with a ttW or a ttWW event.

objective is to reconstruct a deliberately masked particle within each event. This

-It is also similar to the signature of a ttZ event, since task forces the model to learn the underlying structure of standard model
N \\ Jet / e | Zbosons decay mostly into processes, effectively capturing the correlations and distributions typical of
o | I/E S Z__,. o Jetsor l§p.ton!ca.lly. background physics.
© w7 bjj,, -Lastly, it is similar to the -At inference, the trained model is applied to events from the control region (CR),
Q 9~ = ' [ signature of a ttH event, as which includes both background and a small admixture of signal-like events. For
® © H% & & & | (e Higgs boson can decay each event, the model predicts the masked particle and assigns a reconstruction
, /to NN Into 2 jets, a W-or a Z-palr. score that reflects how consistent the predicted particle is with background-like
%/Wf ,;\ N | ttw, ttWW, ttZ & ttH will behavior.
o7 8 X. \\\\\ C\\\ e | be the background events. -An anomaly threshold is defined by
% e Ve coneceer operating characterisic oo cuves . | S€lecting a score that best separates (R

background from CR signal, based on their
reconstruction score distributions.

-Finally, we apply the model to events from
the signal region (SR). Events with

0.8 1

ATLAS detector

-ATLAS Is one of the four detectors of the LHC at CERN.

. . reconstruction scores that fall below the
-The dataset, from the Dark Machines Collaboration [2], g .
: : . . . anomaly threshold are classified as
s from simulated proton-proton collisions inside the anomalies, and are treated as signal
ATLAS detector (as it was during RUN 2) and at the —k-osen ’
center of mass energy of 13 TeV. R T T i)
[3]
Histograms of the average scores of reconstructions
.Of all 4VECT for each event - Encoding 5
0.0251 I [ Background
1 Signal - 4top
————— Optimal Threshold = 4.7803
n:—oo
T‘]:—|—c>o éo.om
towards LHCb ROC-AUC = 0.6435
centerof the LHC — : . i . . il
ATLAS coordinate system ' ' Score(Sparse Categorical Crossentropy) _ '
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An LLM-like Model Tokenization strategy

Output
Probabilities c ey : :
‘We would like to build an LLM-like model that correctly L The initial data set (Dark Machines Collaboration [2]),
reconstructs a «hidden» particle from an event. Lm‘tear (:Ontami| for eaChf e\éent andlfor U[i) JE:IO 18 partrI]CleS of that
. / event, the type of the particle including it rge, It
-We are using encoder-only transformers, that use (sequences r A ’ YPE OTINE pTLItie INCIUCING 15 Chdrge, 1> P, @
. . Add & Norm and n, and the missing transverse energy of the event (MET)
of) tokens as input(s) and have ~260 trainable parameters. Food . . .
| | | Forward and its azimutal angle(METphi). The events are 0-padded so all
N Add & Norm . : . .
Goal: inputs[ Batches of events ] [ Batches of events ] ~ Batches of events h’;\‘*t'lt“'}?_ead -SInce our model needs J.[O SSllEges lnpUt’ the partl(:le phyS|CS
! ] — dataset had to be tokenized and the 0-pads are masked.
LLM-like models | | ' & J
| v t
Spatr)se Cat.crosz__e:tg {Score reconstruction} [ Score ] Score reconstruction | E,?i;g;zl ®_<?
e ait;v;eansr(); tlc(:kzn 4VECT (masked 1by1) | | reconstruction MET | | METphi ] Input “\We tried several approaches to tokenize [ o J
R “a I Embedding ] ) nput sequence
A Ture § o | the events by hand, including the
0 Inputs tokenization of the 4-vectors of a particle.

The example above is obtained by

4VECT Predictions - in event 10733 (background) Continuous Latent |

-During training and inference, we N e sl categorizing each property of a particle in [ Representation _
mask one particle from that event to | oo 5 bins. [ =
g g o VectorQuantlzatlon e,
do a next-token-like prediction. z \We are Current[y trymg to do a g
-The output of our model is a : tokenization with VQ-VAE to see if it [ F?fp‘f,fsfnﬁztf;f Jﬁg
two-dimensional tensor containing | improves the performace of our model. (codebogindices) 2
for each particle of the input event, -Special attention is also given to the Decoder Network S
the probabilities for each token to W ﬂ— ——— selection of information given to the model |———*——
represent that particle. e S 8 (MET, METphi, number of jets, of leptons ... | “reouence |

4=top, ttW, tTWW, tiZ, itH  |hference and Anomaly detection

-4-top-quark events decay into 4 to 12 jets and 0 to
4 charged leptons. Its signature shares similarities

, -The language model is trained exclusively on background-only events, where the
with a ttW or a ttWW event.

objective is to reconstruct a deliberately masked particle within each event. This

-It Is also similar to the signature of a ttZ event, since task forces the model to learn the underlying structure of standard model
N \\ Jet / e | Zbosons decay mostly into processes, effectively capturing the correlations and distributions typical of
o\ | I/E S Z__,. o Jetsor l§p.ton!ca.lly. background physics.
w7 bjj,, -Lastly, it is similar to the -At inference, the trained model is applied to events from the control region (CR),
Q @~ " | signature of a ttH event, as which includes both background and a small admixture of signal-like events. For
® © H% & & & | (heiggs boson can decay each event, the model predicts the masked particle and assigns a reconstruction
, /to NN Into 2 jets, a W-or a Z-palr. score that reflects how consistent the predicted particle is with background-like
%/Wf ' N | LW, tEWW, tZ & ttH will behavior.
et \ \\\\ ¢ \\\ e | be the background events. -An anomaly threshold is defined by
V9 ’+ \\\ Receiver Operating Characteristic (ROC) Curves SeleCtin
e e oty S e et Greiags g a score that best separates (R

background from CR signal, based on their
reconstruction score distributions.

-Finally, we apply the model to events from
the signal region (SR). Events with
reconstruction scores that fall below the

ATLAS detector

-ATLAS Is one of the four detectors of the LHC at CERN.
-The dataset, from the Dark Machines Collaboration [2],

METphi LLM
(AUC = 0.5200)

: . . . O — T e anomaly threshold are classified as
s from simulated proton-proton collisions inside the __avecum anomalies, and are treated as signal
ATLAS detector (as it was during RUN 2) and at the / — Limstiuc = o'76) ’
— (AUC = 0.5828)
Center Of maSS energy Of 13 TeV. 'ofo 0.2 . |0:4P = Olft 0.8 1.0
[3] , ,
Histograms of the average scores of reconstructions
of all 4VECT, of the MET and the METphi for each event - Encoding 5, 5bins for MET/METphi
0.030- I [ Background
[ Signal - 4top
S Optimal Threshold = 2.1932
n:_oo 0.0201
T‘]:_|_oo c © 0.015
okapdaliia &6 ROC-AUC = 0.5789
centerof the LHC Pp—_— . :
ATLAS coordinate system Cassshiros)
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