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Data quality monitoring (DQM) in particle physics

> DQM is a gatekeeper against corrupted, > An automated DQM to be:
anomalous data

» Traditional DQM is manual: shifters compare > Accurate = as high as possible

data with references provided by experts: > Specific > where is the problem

. . Automated DQM?
» Human recourses intensive ,
o » Interpretable 2> “why” the algorithm
» Limited accuracy

> Any detector or software updates > decided so
challenges adapting to the new > Dynamic - adaptability to the changing
operational conditions
otoiou conditions
\, FECEFENCE » Fast - although analyzing vast amount of
provided by data

the experts

Automated DQM will help to reduce person
power and the amount of inconsistencies

Shifters are trained to judge if it is a good data or a bad one
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DINAMO-S is already being commissioned
[1] arXiv: 2501.19237 at the LHCb experiment for offline DQM
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* Adaptability * Interpretability * Relative simplicity

Simple example of a single 1d histogram:

provided by the algorithm
based on data
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Shifters are trained to judge if Shifters are pointed to this histogram (or to the subsystem)
itis a good data or a bad one out of hundreds of them to make the final judge

[1] arXiv: 2501.19237
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I. Data quality monitoring

% In particle physics experiments, DQM

is a gatekeeper against corrupted,

anomalous data dal
Traditional DQM is manual: shifters

B3

provided by experts:
% High cost of person power
% Limited accuracy

/

% Any detector or software updates >
challenges to adapt to changes in

"
ta
compare data with references /\

provided by the ex

% Anautomated DQM to be:

Tence

&

Automated DQM?

tojudgeif

abadone

Accurate > as high as possible
ecific -> where is the problem

Interpretable > “why” the algorithm

ecided so
Dynamic > adaptability to changing
conditions
Fast > although analyzing vast amount
of data

Automated DQM will help to
reduce shifters burden and the
amount of inconsistencies
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% Interpretability

compute f between

egood run [T/ regerenee T
ebod run - unc%r[‘l%jn{é }A“"g"‘ - (}:45‘“)

//\; bui Mma

//’ DINAMO-S

EWMA-based.
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and. the new run

Build the ically to
conditions based on Exponentially Weighted Moving
Average (EWMA) method:

1. Include also the weights of each run according to
1
their statistical noise:

3. Iterative update of weighted sum: 5., = o, + (1 - kX,
4. Iterative update of sum of weighted squared residuals to

model the uncertainty:

w1 =08+ (1

5. Compute the reference mean and uncertainty:

S

1
6. Compute test statistics
to compare the two:

1%
Parameter ais a hyperparameter to control EWMA
@

% Training
+ Takes mini-batch of K good last runs

% Relative sirr

log (/)=

Anomaly !
+setathreshold =

via Online learning:

“ Anomaly detection as follows:
# Context creation: for a new run, we identify up to M most recent good runs as

input to the transformer

“ Gaussian negative log-likelihood as loss: V1L

> slower but

threshold=05
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“ Learning to predict the bin-by-bin means and widths for future runs

# Predict reference: output p and o by the model
“ Anomaly score: compute the test statistic the same as with DINAMO-S

V. Results with synthetic data

Results on a single dataset: DINAMO-ML

% “Historical regime” (first
20% of runs) > to tune .
hyperparameters and the
threshold based on balanced
accuracy

“ Distribution of the anomaly
scores for a single dataset
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% The ive evaluatio

and quicker in adapting
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11l. Synthetic data generator

Realistic synthetic data:

“ Based on 1d Gaussian distributions as histograms

“ Main focus is the modeling of changes in conditions
Implemented features:
Slow drifts > p evolve gradually (sinusoidal drift)

N\
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% Abrupt shifts > sudden changes in p or/and &
+

% Varying events statistics > initial number of events is
sampled from a uniform distribution

« Systematic uncertainty >
accidental increase or
decrease of events in the
right half of the histogram’s
window using binomial
distribution

% extra distortion in p or/and o
% dead bins: random number of bins (up to 20) get missed
content
qod run b e

IV. Main metrics
< Balanced accuracy > to balance the uneven class ratio

+ Adaptation time -> an average amount of good runs to be
misclassified before the algorithm adapts
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+ Uncertainty coverage -> how well the actual variability of the
good runs is described using Jaccard distance between the true
£00d runs and the predicted references in the z-score space

Aggregated results: 1000 synthetic datasets with different seeds

demonstrates that both DINAMO algorithms
of

n data ¢

thanks to it more complex nature
. i

DINAMO-S in all our metrics.

is p:
balanced accuracy
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Numbaer of steps to adapt

BAL. ACC. T SPECIF. T

SENSIT. T JACCARD D. FOR 0 | ADAPT. TIME |

DINAMO-S  0.94770928  0.04370028

0012 0015 0.02
DINAMO-ML 0.966! 5912 0.969!5:01% 0.966! 9931

0058

0.95600% 0.13970% 202133
0.134/ 9057 161057

“ We present DINAMO - a novel approach to automate DQM for large

% Key advantages:
% Adaptability to changes in operational conditions
“ Interpretability through the references’ dynamic
creation (+ uncertainties)
% Relative simplicity to enhance maintainability

based, machine learning version: DINAMO-ML

the standard version in all our metrics

“+ DINAMO-S is already being commissioned at the
LHCb experiment for offline DQM
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