

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034319 and from the European Union -NextGenerationEU.

DINAMO: Dynamic and INterpretable Anomaly MOnitoring for Large-Scale Particle Physics Experiments

Arsenii Gavrikov^{1, a}, Julián García Pardiñas², Alberto Garfagnini¹

¹University & INFN Padova, Italy ²Massachusetts Institute of Technology (MIT), USA ^aspeaker

2nd European AI for Fundamental Physics Conference 17 June 2025, Cagliari, Italy

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

A. Gavrikov (UNI & INFN Padova), J. García Pardiñas (MIT)

Data quality monitoring (DQM) in particle physics

- DQM is a gatekeeper against corrupted, anomalous data
- Traditional DQM is manual: shifters compare data with references provided by experts:
 - Human recourses intensive
 - Limited accuracy
 - ➤ Any detector or software updates → challenges adapting to the new operational conditions

- > An **automated DQM** to be:
 - \blacktriangleright Accurate \rightarrow as high as possible
 - ▶ **Specific** → where is the problem
 - ➤ Interpretable → "why" the algorithm decided so

 - ➤ Fast → although analyzing vast amount of data

Automated DQM will help to reduce person power and the amount of inconsistencies

DINAMO

DINAMO: Dynamic and INterpretable Anomaly Monitoring [1]

A. Gavrikov (UNI & INFN Padova), J. García Pardiñas (MIT)

DINAMO

DINAMO: Dynamic and INterpretable Anomaly Monitoring [1]

Adaptability
Interpretability
Relative simplicity

Simple example of a single 1d histogram:

Università degli Studi di Padova

Thank you!

More on the poster...

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034319 and from the European Union – NextGenerationEU.

