WASSERSTEIN NORMALIZED AUTOENCODERS FOR DETECTING ANOMALOUS JETS IN CMS

Variations on the autoencoder (AE) idea are among the most widely used tools for anomaly detection in HEP

Simple idea: learn compressed representation of the data, anomalies are spotted by failing to reconstruct them

ETH zürich 🎽 🤇

EUROPEAN AI FOR FUNDAMENTAL PHYSICS CONFERENCE EUCAIFCon 2025

<u>Roberto Seidita</u>, on behalf of the CMS collaboration

In reality, this does not always work

Signal: strongly-interacting dark sector events producing hadronic jets with fraction r_{inv} of invisible particles

Background: jets from top quarks

WASSERSTEIN NORMALIZED AUTOENCODERS FOR DETECTING ANOMALOUS JETS IN CMS

ETH zürich 🎽 🧐

<u>Roberto Seidita</u>, on behalf of the CMS collaboration

Why does this happen? \rightarrow Out-of-distribution (OOD) reconstruction

What we ask of AEs: reconstruct the training data well

Can we ask the "correct" question? Yes!

Normalized AE [1] approach:

- Assign a maximum-entropy p.d.f. to the AE
- Use it to sample what the AE is learning to reconstruct
- Enforce that only the training data is learned

WASSERSTEIN NORMALIZED AUTOENCODERS FOR DETECTING ANOMALOUS JETS IN CMS

ETHZURICH CMS EUROPEAN AI FOR FUNDAMENTAL PHYSICS CONFERENCE EUCAIFCon 2025

Roberto Seidita, on behalf of the CMS collaboration

Wasserstein Normalize AF:

- At training time, sample from induced distribution
- Measure the Wasserstein distance to the training sample
- Minimize it

Many complications, but it works! Come tomorrow for more info and results 🙂

