

End-to-End Optimization of Generative AI for Robust Background Estimation

Giada Badaracco^{[1][2]}, Sean Benevedes^{[2][3]}, Christina Reissel^[2], Gaia Grosso^{[2][3]}, Thea Aarrestad^[1], Philip Harris^{[2][3]}

^[1] ETH Zurich, ^[2] MIT, ^[3] NSF Institute for Artificial Intelligence and Fundamental Interaction (IAIFI)

MOTIVATION

Why do we need better background models?

LHC searches for BSM physics often target **rare-event**, tails of distributions where tight selection cuts reduce background statistics making MC simulations too computational expensive for reliable background modeling, necessary for anomaly detection.

PROBLEM

To what extent can we trust **Generative AI**?

Generative models can interpolate complex distributions, **but in low**statistics regions they may be less precise, so estimating shape uncertainty is essential for robust use.

→ Model uncertainties to ensure robust anomaly detection

 \rightarrow Generative data-driven models

in data-limited scenarios

Asymptotic Z-scores: • Ensemble: $Z = 1.9 \pm 0.2$ • $f_i: Z = 7.8 \pm 0.1$ \rightarrow ensemble improves

corresponding to null hypothesis \mathcal{H}_0

Training:

- Smoothness and flexibility impact on ensemble behavior
- Compare with other density estimators, e.g. Mixture of Gaussians

• Compare with alternative uncertainty modeling, e.g. Dropout, Bayesian Flows

• Integrate uncertainty into the GoF test

3. "Goodness of fit by Neyman-Pearson testing" <u>arXiv:2305.14137</u> 1. "Learning multivariate new physics" <u>Eur. Phys. J. C 81, 89 (2021)</u> 4. "Frequentist Uncertainties on Neural Density Ratios with w_if_i Ensembles" <u>arXiv:2506.00113</u> 2. "Learning new physics efficiently with nonparametric methods" <u>Eur. Phys. J. C, 82(10)</u>