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MOTIVATION
Why do we need better background models?

LHC searches for BSM physics often target rare-event, tails of
distributions where tight selection cuts reduce background statistics
making MC simulations too computational expensive for reliable

background modeling, necessary for anomaly detection.

— Generative data-driven models
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PROBLEM

To what extent can we trust Generative Al?

Generative models can interpolate complex distributions, but in low-
statistics regions they may be less precise, so estimating shape
uncertainty is essential for robust use.

— Model uncertainties to ensure robust anomaly detection

In data-limited scenarios
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BACKGROUND MODELING
WITH NORMALIZING FLOWS

( target distribution p(x) )

Train different fi; varying
model initializations i and
data bootstraps j

Average over B

l
Qootstraps fi(x) = %ijij(x)
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END-TO-END METHOD
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FREQUENTIST UNCERTAINTY
ESTIMATION WITH W;F; ENSEMBLES

Optimize weights

- L(w)

= NLL(w) + (S w; — 1)
Ww; = argminwl. (L(w))

ov(w)
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Estimate covarlance
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COVERAGE CHECK

Choose observable (©)

whose estimate @ IS compared

to expected value (9*

= O(f (x)) O = O(p(x))

Propagate error and
cqeck coverage

. |semi-supervised anomaly detection
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GOODNESS OF FIT WITH NPLM

New Physics Learning Machine is a

method that:

 learns likelihood ratio between
generated and reference distributions

 models alternative hypothesis HW
using a kernel-based ML model

- computes a test statistic (D)

« 100k target events

permutations

e each NF uses masked autoregressive splines and

« 30 models on different bootstrapped datasets

For checking the coverage:
we choose observable © = [ dx x f (x)

= fdx X p(x)
best architecture found for coverage:

with expected value ©*

#bins = 15, #layers = 4, #blocks = 16, #features = 128

corresponding to null hypothesis H

We use NPLM to test whether generated distribution
f(x) differs significantly from target distribution p(x)
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Coverage at ~68%
for 100k target and

20k generated events
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Total intervals: 230
Coverage: 63.70%
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FUTURE WORK

events

behavior

Gaussians

« Smoothness and flexibility impact on ensemble

e Compare with other density estimators, e.g. Mixture of
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Asymptotic Z-scores:
* Ensemble: Z=1.9 + 0.2
» f:72=7.8=x0.1
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00 0.605 0.610 —> ensemble improves

accuracy
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REFERENCE
coo NPLM RECO

NPLM fit over marginals
— detected distortion within
1o uncertainty bands

e.g. Dropout, Bayesian Flows

o
o« Compare with alternative uncertainty modeling, =L
—

 Integrate uncertainty into the GoF test
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