nuT: Neutrino Reconstruction with Transformers
Transfer Learning Across KM3NeT/ORCA Telescopes for Neutrino Oscillations Physics
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KM3NeT in search of neutrinos

Deep-sea neutrino telescopes in the Mediterranean sea [1]
« KM3NeT/ARCA: identify high-energy neutrino sources in the universe
* KM3NeT/ORCA: study of neutrino properties

Optimized for1TeV - 10 PeV and 1-100 GeV energies, respectively.

KM3NeT/ORCA
115 vertical detection units
with 18 Digital Optical
Modules each
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A muon from a neutrino interaction near the sea bottom travels through the
telescope radiating Cherenkov photons collected by the PMTs with high time
and position resolution
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A transformer-based model [2] tailored for neutrino event reconstruction
Reconstructs from sparse light patterns detected in the telescope

Uses attention masks inspired by physics principles and detector geometry [3, 4]
Uses transfer learning to propagate information across detector configurations
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KM3NeT/ORCAG preliminary, simulations
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0.854 Directly trained

3 Fine-tuned from ORCA115 model
on ORCA6

Challenge: 2 (pre-trained on a 3.8M sample)

¢ KM3NeT/ORCA telecope grows!
¢ Tzraining for every detector response
update is costly.
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Transfer Learning solution:
e ORCAI15 pre-training: the largest
configuration, but idealistic.
¢ ORCAG fine-tuning: limited, but
simulated from real data-taking.
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Improvements:
» Faster convergence
» Better performance with limiteddata ¢ | ™ |

¢ Generalization and robustness across 01K 1K 10K 100K M
detectors Sample size per event class (v5¢, vS©)
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Challenges of neutrino physics reconstruction in KM

Reconstruct neutrinos from light Training large models
KM3NeT/ORCA preliminary, simulations
. . . . . Only tracks: vg© + ¢
Maximum Likelihood Fit (MLF) algorithms: ORCALLS nuT  —— Wirt. lepton KM3NeT generates realistic Monte Carlo
; 40 _ . i
¢ Reconstruct under track or shOV\{er hypothesis = 8232 ;ULTF W.r.t. neutrino samples based on actual data-taking runs,
* Do not reconstruct the neutrino itself A capturing the complexities of deep-sea
nuT rpodel beyond MLF: ' g 30/ conditions.
y D.lrectly reconstructs neutrinos from QY The efficiency of the nuT model and the use
« Simultaneously reconstruct all event t){pes . § _______ of data and computing resources are
Altough not compared here, an MLF algorithm simultaneously & 207 e b maximized by leveraging pre-trained
reconstructing the track and shower is in development [5] K N e T — models
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S20{"" _|—| A S physics results [6], limits the reconstruction.
adronic = 0 evertheless, with increased detector an
hadroni E , Neverthel ith i d detector and
shower & - — , statistic, the understanding of neutrino
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Energy (GeV) physics improves.
102 KM3NeT/ORCA6 simulations, work in progress KM3NeT/ORCA6 simulations, work in progress Angulal‘ resolution
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Only tracks: uZ€ + B¢ e MLF: <10° resolution above 10 GeV
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= //' 571 —0.50 e MLF: underestimation from missing
g 5 - 0.75 hadronic component.
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& p— e nuT: accounts for both visible and non-
— Only tracks: vE® + 0 L.
/" —1.001 — Median —— nuT w.r.t. neutrino visible energy.
1925 68% quantiles MLF w.r.t. lepton Saturation effect caused by to limited
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Further improvements

cc . .
Shower events (V. ) reconstruction with nuT model
Angular resolution: relative improvement of 40% w.r.t. MLF (<10° above 10 GeV)
Energy reconstruction: better accuracy w.r.t. to tracks because of its containment

Background signal suppresion

Atmospheric muons: <1% reconstructed as upgoing (< 8% of contamination)
Optical background: effectively removed from quality cuts in reconstruction
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