Automatizing the search for mass resonances using **BumpNet**

Jean-François Arguin¹, Émile Baril¹, Ilan Bessudo², Fannie Bilodeau¹, Maryna Borysova², Shikma Bressler², Samuel Calvet³, Shalini Epari¹, **Ethan James Meszaros**¹, Elad Kliger², Michael Kwok Lam Chu², Hoang Dai Nghia Nguyen¹, Julien Noce Donini³, Eva Mayer³, Bruna Pascual³, Theresa Reisch⁴, Amit Shkuri², Muhammad Usman¹, Imane Zahir⁵

¹Université de Montréal ²Weizmann Institute of Science ³Laboratoire de Physique de Clermont-Auvergne - UCA -CNRS/IN2P3 ⁴University of Geneva ⁵Hassan II University of Casablanca

Motivation

- Train a neural network to **identify mass bumps in real data** without the need of What? simulation or analytical fit to estimate the background
- Exploit the **discovery potential of the data** Why?
 - Impossible to check all possible searches with the traditional analysis
 - Many possible resonances in unexplored final states

Histogram Processing + Calibration

- Train + evaluate using the Dark Machines dataset [3]
 - Designed to test anomaly detection techniques
 - Equivalent to 10 fb⁻¹ with highest cross-section processes at the LHC
- **Final states** made from all possible combinations of the following objects:

$\rho \qquad \gamma$	Racona	structad lantonic '	4

Overview

BumpNet [1] is a fully supervised neural network (NN) trained to map smoothly falling histogram data to z-significance values.

Training

significance in each bin

Application

significance in each bin

- Γ DUUSLEU lJet(j)Boosted hadronic W/ZHigh mass jet (m > 200 GeV) μ
- 30,000 mass histograms created from all combinations of objects in each final state (e.g. $1e + 2j \rightarrow m(e, j_1), m(e, j_2), m(j_1, j_2), m(e, j_1, j_2)$)
- Rebinning reflects detector resolution

Performance

 \bigcirc Unbiased agreement between Z_{max}^{LR} and $Z_{max}^{BumpNet}$

Architecture

 4×1 -D **convolutional layers** followed by a dense layer. Intuitive and **agnostic to the number of bins** in the histogram.

Promising results when finding the **Higgs bump**; predicted significance is 4.6σ whereas Z_{LR} yields 4.2σ

Sensitive to **BSM signals** (example) below: $stop \rightarrow be$)

 \heartsuit Limits on the number of signal entries derived from $Z_{BumpNet}$ closely match those from Z_{LR}

Training

Smoothly falling curve (from analytical functions and GPR) + **gaussian signal** \rightarrow **Poisson fluctuate** (training data) \rightarrow calculate **local significance** in each bin (label) [2]

References

1 Arguin, J.F. et al. (2025). J. High Energ. Phys. 2025, 122 (2025). https://doi.org/10.1007/JHEP02(2025)122

2 Cowan, G., Cranmer, K., Gross, E., & Vitells, O. (2011). European Physical Journal C, 71(2), 1554. https://doi.org/10.1140/epjc/s10052-011-1554-0

3 Aarrestad, T. et al. (2022). SciPost Phys. 12, 043 doi:10.21468/SciPostPhys.12.1.043

Acknowledgements

June 16-20, 2025

EuCAIFCon 2025

ethan.james.meszaros@cern.ch