

EUROPEAN AI FOR FUNDAMENTAL PHYSICS CONFERENCE EuCAIFCon 2025

Neuromorphic Readout for Hadron Calorimeter

Enrico Lupi, Alessandro Breccia, Riccardo Carroccio, Tommaso Dorigo, et al.

Introduction: **Our Goal**

- Hadron calorimeters rely on high segmentation to extract topological information and improve performances ⇒ This leads to high cost, high power, massive data volumes, and very fast processing requirements
- We propose a neuromorphic readout of the light signals to provide low-latency, low-power consumption local computation to generate high-level primitives

Neuromorphic Computing

- Computing approach that mimics the human brain using artificial neurons and synapses
- We use a **Spiking Neural Network**, in which neurons:
 - communicate using "spikes" (discrete signals)
 - have an internal membrane potential that evolves in time and
 - integrates incoming spikes
 - fire output spikes whenever the potential reaches a threshold

Processing Pipeline:

1. Data Generation

Simulated using GEANT4 + custom light propagation model

Light Signals

3. Spiking Network

- Feed-forward NN with dense layers
- Leaky-Integrate-and-Fire (LIF) neurons implemented in *snnTorch*

4. Output Spike Decoding

Spike rate decoding scheme

$$\hat{X} = rac{1}{N_{pop}} \sum_{i=1}^{N_{pop}} \sum_{t=1}^{T} S^{(i)}[t]$$

Results:

We apply this processing pipeline to three quantities:

- a. log of total energy released
- b. Position of energy depositions centroid
- c. Dispersion of energy depositions

	log(E/MeV)	Ε	x _c	Уc	z_c	σ_x^2	σ_y^2	σ_z^2
ϵ_{rel} (%)	1.975	18.37	18.13	24.74	2.85	26.07	31.39	12.04
ϵ_{abs}	0.073	2039 MeV	0.44	0.58	0.18	0.58	0.62	0.41

It is possible to build network that regress mutiple values at once by specializing populations of output neurons, obtaining comparable results.

