B-hadron identification in b-jets using novel deep learning technique in pp collisions in CMS

Prince Kumar On behalf of CMS Collaboration

kumar.prince@cern.ch

Poster ID: 106

Input

Jets are modeled as graphs with individual tracks as nodes, enabling the network to capture complex dependencies inherent in particle interactions.

Dataset

- p-p 5.02 TeV : Number of jets: ~13M (Testing data: ~40K jets); Pb-Pb 5.02 TeV : Number of jets: ~5M (Testing data: ~140K jets)
- Loss Function, $L = CategoricalEntropywithLogits(y_{jet}, y_{truth}) + CategoricalEntropywithLogits(y_{track}, y_{truth}^{trk})$
- 16 features assigned to all tracks (nodes) used for training:
 - Jet level features: number of tracks, p_T^{jet} , η^{jet} . Jet level features are assigned identically to all the tracks (nodes) inside a jet (graph).
 - Track level features: p_T^{track} , ϕ^{track} , track impact parameter significance in 3D and 2D, distance of track from jet axis.
 - Secondary Vertex features: boolean value for secondary vertex track, Decay length significance in 3D and 2D, secondary vertex mass, Secondary vertex corrected mass* [9], normalized x² of the SV fit.

CMS Detector (Compact Muon Solenoid)

- Silicon Tracker: Reconstructs charged particle paths.
- ECAL: Measures energy of electrons and photons.
- HCAL: Measures energy of hadrons.
- Superconducting Magnet (3.8 T): Bends charged particle tracks.
- **Muon Detectors:** Identify and track muons outside the calorimeters.

We also do performance analysis in bins of some key jet variables, presented in the poster in pp and PbPb.

Session B: 19 June

Thursday 12:00 - 15:00

Poster ID: 106