Evaluating Two-Sample Tests for validating generators in precision sciences

Samuele Grossi^{(†) 1,2*}, Marco Letizia^{2,3*}, Riccardo Torre^{2*} ^{1*} Department of Physics, University of Genova, Via Dodecaneso 33, I-16146 Genova, Italy ^{2*} INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy ^{3*} MaLGa-DIBRIS, University of Genova, Via Dodecaneso 35, I-16146 Genova, Italy † sgrossi@ge.infn.it

sgrossi@ge.infn.it				
1. Motivations and purpose of the work	2. Test statistics			
Model based Monte Carlo ML-based generative models	$t_{\rm SW} = \frac{1}{K} \sum_{\theta \in \Omega_K} \left(\frac{1}{n} \sum_{i=1}^n \underline{x}_i^{\theta} - \underline{x}_i'^{\theta} \right)$			
• Computationally demanding • Faster simulations	$t_{\overline{\mathrm{KS}}} = \frac{1}{d} \sum_{I=1}^{d} \sqrt{\frac{nm}{n+m}} \sup_{u} F_n^I(u) - G_m^I(u) $			
• Reliable synthetic data • Lower reliability	$t_{\text{SKS}} = \frac{1}{K} \sum_{\theta \in \Omega_K} \sqrt{\frac{nm}{n+m}} \sup_u F_n^{\theta}(t) - G_m^{\theta}(t) $			
Necessity to validate data from generators! This can be done using a two-sample test , which checks if two independent samples come from the same probability density function (PDF).	$t_{\text{MMD}} = \frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{j\neq i}^{n} k(x^{i}, x^{j}) + \frac{1}{m(m-1)} \sum_{i=1}^{m} \sum_{j\neq i}^{m} k(y^{i}, y^{j}) - \frac{2}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} k(x^{i}, y^{j})$ $t_{\text{FGD}} = \lim_{n,m\to\infty} \sum_{I=1}^{d} (\mu_{1,n}^{I} - \mu_{2,m}^{I})^{2} + \operatorname{tr} \left(\sum_{1,n} + \sum_{2,m} - 2\sqrt{\sum_{1,n} \sum_{2,m}} \right) $ [1]			
• THEORETICALLY: likelihood-ratio is the most powerful test for simple hypothesis. <i>Need to know</i> the PDFs generating the samples.	$t_{\text{NPLM}} = -2 \left[\frac{n}{m} \sum_{x \in \mathcal{X}} \left(e^{f_{\hat{w}}(x)} - 1 \right) - \sum_{y \in \mathcal{Y}} f_{\hat{w}}(y) \right], \qquad f_w = \sum_{i=1}^M w_i k_\sigma(\tilde{x}, \tilde{x}_i) $ $t_{\text{LLR}} = -2 \log \frac{\mathcal{L}_{H_0}}{\mathcal{L}_{H_1}} $ $[2]$			

• PRACTICALLY: Underlying PDFs are usually *unknown* when dealing with real data. Need to use metrics that involve only the data.

Purpose of the work: Establish a rigorous statistical procedure based on robust, simple, and interpretable two-sample tests that can serve both for evaluation and for benchmarking more advanced tests.

3. Reference and Deformed Models

Toy Distributions:

JetNet Datasets:

- *d* dimensional multivariate Correlated Gaussians
- q components, d dimensional mixture of multivariate Gaussians d = 5, 20, 100
- Overall jet features
 Individual particles in the gluon initiated jets

Features number = 3, 90

Deformed models are defined by a single parameter ϵ :

(1)	μ -deformation:	$y_{iI} = x_{iI} + \delta_{\mu I} ,$	$\delta_{\mu I} \sim \mathcal{U}_{[-\epsilon,\epsilon]}$
(2)	Σ_{II} -deformation:	$y_{iI} = \mu_I + c_{\Sigma I} (x_{iI} - \mu_I),$	$c_{\Sigma I} \sim \mathcal{U}_{[1,1+\epsilon]}$
(3)	$\Sigma_{I\neq J}$ -deformation:	$y_{iI} = \sum_{j} P_{ij}^{(I)} x_{jI}$,	$\mathbf{P}_{ij}^{(I)} = P_{ij}^{(I)}(\epsilon)$

4. Methodology and test features

Goal: Make inference on ϵ , finding the smallest value we are sensitive to.

Test H_0 : build test statistic distribution under H_0 . Perform $10^4(10^3)$ repeated tests on samples drawn from the reference toy distribution(dataset).

Test H_1 : perform 100 test on samples extracted from the reference and the deformed distributions. Calculate the mean and standard deviation to get a central value and an error on ϵ

(4)
$$pow_+$$
-deformation: $y_{iI} = sign(x_{iI})|x_{iI}|^{1+\epsilon}$, $\epsilon \ge 0$
(5) pow_- -deformation: $y_{iI} = sign(x_{iI})|x_{iI}|^{1-\epsilon}$, $\epsilon \ge 0$
(6) \mathcal{N} -deformation: $y_{iI} = x_{iI} + \delta_{iI}$, $\delta_{iI} \sim \mathcal{N}_{0,\epsilon}$
(7) \mathcal{U} -deformation: $y_{iI} = x_{iI} + \delta_{iI}$, $\delta_{iI} \sim \mathcal{U}_{[-\epsilon,\epsilon]}$

- test close to the decision boundary: ϵ such that the mean is at the CL threshold. Use the standard deviation to set an error on ϵ .
- test different precision: evaluate each metric varying sample sizes.

5. Some Results (MoG and Jet features)

6. Conclusions

- 1D based metrics are robust and efficient, while NPLM is more sensitive but slower.
- No universally best metric. When speed is prioritized over precision, 1D based metrics are preferable. When sensitivity is the main goal and time is not a limiting factor, NPLM is more effective.
- A good strategy is to start with 1D based metrics for a quick validation. If they do not reject the model, switch to more ML metrics, like NPLM.
- Another possibility is to use the 1D based metrics during model parameters tuning and rely on more powerful metrics for the validation.

References

R. Kansal, A. Li, J. Duarte, N. Chernyavskaya, M. Pierini, B. Orzari and T. Tomei. "Evaluating generative models in high energy physics". In: Phys. Rev. D (2023).
 G. Grosso, M. Letizia. "Multiple testing for signal-agnostic searches of new physics with machine learning". In: European Physics Journal C (2025).

[3] S. Grossi, M. Letizia, R. Torre. URL: https://github.com/TwoSampleTests

