
Evaluating Two-Sample Tests for
validating generators in precision sciences
Samuele Grossi(†) 1,2∗, Marco Letizia2,3∗, Riccardo Torre2∗

1∗
Department of Physics, University of Genova, Via Dodecaneso 33, I-16146 Genova, Italy

2∗
INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy

3∗
MaLGa-DIBRIS, University of Genova, Via Dodecaneso 35, I-16146 Genova, Italy

† sgrossi@ge.infn.it

1. Motivations and purpose of the work
Model based Monte Carlo

• Computationally demanding

• Reliable synthetic data

ML-based generative models

• Faster simulations

• Lower reliability

Necessity to validate data from generators! This can be done using a two-
sample test, which checks if two independent samples come from the
same probability density function (PDF).

• Theoretically: likelihood-ratio is the most powerful test for sim-
ple hypothesis. Need to know the PDFs generating the samples.

• Practically: Underlying PDFs are usually unknown when dealing
with real data. Need to use metrics that involve only the data.

Purpose of the work: Establish a rigorous statistical procedure based
on robust, simple, and interpretable two-sample tests that can serve both
for evaluation and for benchmarking more advanced tests.
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3. Reference and Deformed Models
Toy Distributions: JetNet Datasets:

• d dimensional multivariate Corre-
lated Gaussians

• q components, d dimensional mix-
ture of multivariate Gaussians
d = 5, 20, 100

• Overall jet features
• Individual particles in the

gluon initiated jets

Features number = 3, 90

Deformed models are defined by a single parameter ϵ:
(1) µ-deformation: yiI = xiI + δµ I , δµ I ∼ U[−ϵ,ϵ]
(2) ΣII -deformation: yiI = µI + cΣ I(xiI − µI) , cΣ I ∼ U[1,1+ϵ]

(3) ΣI ̸=J -deformation: yiI =
∑

j P
(I)
ij xjI , P(I)

ij = P
(I)
ij (ϵ)

(4) pow+-deformation: yiI = sign(xiI)|xiI |1+ϵ , ϵ ≥ 0
(5) pow−-deformation: yiI = sign(xiI)|xiI |1−ϵ , ϵ ≥ 0
(6) N -deformation: yiI = xiI + δiI , δiI ∼ N0,ϵ

(7) U-deformation: yiI = xiI + δiI , δiI ∼ U[−ϵ,ϵ]

4. Methodology and test features
Goal: Make inference on ϵ, finding the smallest value we are sensitive to.

Test H0: build test statistic distribution under H0. Perform 104(103) re-
peated tests on samples drawn from the reference toy distribution(dataset).
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PDF for MoG null with q = 5, d = 20, n = m = 50K, niter = 10K
Null distribution
Kolmogorov PDF
68% CL (x > 0.92)
95% CL (x > 1.15)
99% CL (x > 1.33)
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Test H1: perform 100 test on samples extracted from the reference and
the deformed distributions. Calculate the mean and standard deviation to
get a central value and an error on ϵ

• test close to the decision boundary: ϵ such that the mean is at the
CL threshold. Use the standard deviation to set an error on ϵ.

• test different precision: evaluate each metric varying sample sizes.

5. Some Results (MoG and Jet features)

6. Conclusions
• 1D based metrics are robust and efficient, while NPLM is more sensitive but slower.

• No universally best metric. When speed is prioritized over precision, 1D based metrics are preferable. When sensitivity is the main goal and time
is not a limiting factor, NPLM is more effective.

• A good strategy is to start with 1D based metrics for a quick validation. If they do not reject the model, switch to more ML metrics, like NPLM.

• Another possibility is to use the 1D based metrics during model parameters tuning and rely on more powerful metrics for the validation.
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