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1. Motivations and purpose of the work 2 Test statistics
Model based Monte Carlo ML-based generative models

o« Computationally demanding o Faster simulations

« Reliable synthetic data o Lower reliability ISKS = 7t 2pea \/ mtm SWPu | Fa(t) = Gr,(1) |

Necessity to validate data from generators! This can be done using a two- INMD = 5ty Do Doy K@ 07) + =y SO ST Ry YY) — 2
sample test, which checks if two independent samples come from the
same probability density function (PDF).
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e THEORETICALLY: likelihood-ratio is the most powerful test for sim- HEA [m Lrex (¢ ) = Lyey (y)} fuo = 2 1img Wikio (T, Ti)
ple hypothesis. Need to know the PDFs generating the samples. trir = —2log o

L,

e PRACTICALLY: Underlying PDFs are usually unknown when dealing
with real data. Need to use metrics that involve only the data. 4 Methodok)gy and test features

. . _y 1: Make inf finding th llest val itive to.
Purpose of the work: Establish a rigorous statistical procedure based Goa axe inlerence on ¢, nding the smallest value we are sensitive to

on robust, simple, and interpretable two-sample tests that can serve both

. . e e A/1n3
for evaluation and for benchmarking more advanced tests. Test Hy: build test statistic distribution under Hy. Perform 10%*(10°) re-

peated tests on samples drawn from the reference toy distribution(dataset).

PDF for MoG null with g =5, d =20, n=m = 50K, njter = 10K CDF for MoG null with g =5, d =20, n=m = 50K, njt,er = 10K
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3. Reference and Deformed Models
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Toy Distributions: JetNet Datasets:
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e d dimensional multivariate Corre- e Overall jet features

lated Gaussians e Individual particles in the
e ¢ components, d dimensional mix- gluon initiated jets

ture of multivariate Gaussians
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Number of pseudo-experiments

d = 57 207 100 Features number = 3’ 90 Y 0.8 To 12 14 1.6 1.8 o 0.6 0.8 To 12 14 1.6 1.8
Deformed models are defined by a single parameter e:

t~-deformation: Yir = Tir + 0,71, Opr ~U—c o Test H;: perform 100 test on samples extracted from the reference and

) r7-deformation: yir = pr + e r(@ir — pr), e~ U1t the deformed distributions. Calculate the mean and standard deviation to

>+ s-deformation: =3, Pigf ) 27, Pg ) _ Pg )( €) get a central value and an error on €

pow_ -deformation: y;; = sign(z,s)|xir|*Te, e >0
pow_-deformation:  y;; = sign(z;r)|zir|" ¢, e >0
N -deformation: Vil = i1 + 041, 0ir ~ No.e
U-deformation: Vil = Tir + 041, 01 ~ Uj_c ¢ o test different precision: evaluate each metric varying sample sizes.

e test close to the decision boundary: € such that the mean is at the
CL threshold. Use the standard deviation to set an error on €.

5. Some Results (MoG and Jet features)
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6. Conclusions

e 1D based metrics are robust and efficient, while NPLM is more sensitive but slower.

e« No universally best metric. When speed is prioritized over precision, 1D based metrics are preferable. When sensitivity is the main goal and time
is not a limiting factor, NPLM is more effective.

o A good strategy is to start with 1D based metrics for a quick validation. If they do not reject the model, switch to more ML metrics, like NPLM.

o Another possibility is to use the 1D based metrics during model parameters tuning and rely on more powerful metrics for the validation.
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