Suppressing and Tagging ⁴²Ar/⁴²K Surface Beta Events in LEGEND Using Semi-Supervised Latent Density Estimation

Niko Lay¹, Christoph Vogl¹, Konstantin Gusev¹, Nadezda Rumyantseva¹, Baran Hashemi¹, Lukas Heinrich¹, Moritz Neuberger¹, Mario Schwarz¹, Patrick Krause¹, Tommaso Comellato¹, Andreas Leonhardt¹, Brennan Hackett², Béla Majorovits², and Stefan Schönert¹

¹Physics Department, School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany – ²Max Planck Institute for Physics, Boltzmannstr. 8, 85748 Garching, Germany

Digital Version

osta

CARF

[1] Motivations

- The LEGEND experiment operates high-purity germanium (HPGe) detectors immersed in liquid argon (LAr) to search for neutrinoless double beta decay ($0\nu\beta\beta$) of ⁷⁶Ge.
- LEGEND-1000 background index goal: < 10⁻⁵ cts / (keV kg yr) at ROI.
- Without additional measures, ⁴²K n⁺-surface events would be the dominant background in LEGEND-1000.
- Baseline mitigation: underground-sourced LAr (UGLAr) is depleted in ⁴²Ar.
- In case UGLAr is not available, combined detector enclosures and machine learning for pulse-shape classifications offer a promising alternative. Large n+

• The challenge:

- n⁺ surface events are **challenging to simulate**

[5] Gamma peak vs. side-bands vs. VAE prior classification

- Instead of classifying signal-like vs. n⁺ surface waveforms (labeled events are scarce/unavailable), we train a small MLP using cross-entropy loss to classify events from a peak (\tilde{H}_0) , the side-bands (\tilde{H}_1) , and the guess (H_2) from ²²⁸Th calibration data.
- Obtain the likelihood of the data in the latent space $p(z | \tilde{H}_i)$ under the peak/side-bands hypotheses using Bayes' rule.

Double Beta Decay with the LEGEND-200 Experiment, arXiv:2505.10440 [hep-ex], 2025.

2. LEGEND Collaboration, *LEGEND-1000 Preconceptual Design Report*, arXiv:2107.11462

Signal readout ttps://leaend-exp.ora

surface

[2] Pulse shapes in HPGe detectors

[physics.ins-det], 2021.

Depending on the physical origins, four main types of pulse shapes are induced when ionizing radiation deposits energy in an HPGe detector. 0vββ-signal is expected to be single-site. ⁴²Ar/⁴²K beta backgrounds are mainly n⁺ surface pulses (NSP).

Multi-Site Event n⁺ Surface Pulse p⁺ Surface Pulse Single-Site Event (MSE) (PSP) (NSP) (SSE) — signal current α acceptance 1000 2000 1000 1000 2000 1000 2000 0 0 time (ns) time (ns) time (ns) time (ns) **Background-like** Signal-like

Bayes' rule + $z \sim N(0, I)$ known $p(z | H_2)$

The likelihood of the data from the true events in a peak of interest is obtained using the peak and sidebands modeling (side-bands subtraction of the distributions in the latent space):

$$p(z \mid H_0) = \frac{1}{p(H_0 \mid \tilde{H}_0)} \left\{ \frac{p(\tilde{H}_0 \mid z)p(H_2)}{p(H_2 \mid z)p(\tilde{H}_0)} - \frac{p(\tilde{H}_1 \mid z)p(H_2)}{p(H_2 \mid z)p(\tilde{H}_1)} p(H_1 \mid \tilde{H}_0) \right\} N(0, I)$$

Similarly for the **side-bands**:

$$p(z \mid H_1) = \frac{p(\tilde{H}_1 \mid z)p(H_2)}{p(H_2 \mid z)p(\tilde{H}_1)}N(0, I)$$

- [6] Dataset enhanced in ⁴²K n⁺ surface betas measured in SCARF at TUM for benchmarking SCARF: LAr test facility at TU Munich (TUM)
- Measurements of HPGe detectors in one-ton of LAr before and after ⁴²Ar-spiking (435 Bq) in different configurations for studies of ⁴²Ar/⁴²K background mitigation strategies

[7] Signal- vs. Background-like identification (preliminary)

[3] Available signal and background proxies from ²²⁸Th calibration

Different physical interactions of the 2.6 MeV ²⁰⁸TI line with the detector induces enhanced pulse-shape populations at different energies:

- Double-Escape Peak (DEP): 0vββ-like (signal) (single-site / SSE)
- Full-Energy Peak (FEP) and Single-Escape Peak (SEP): multi-site (MSE)

No/very few explicit labels available for the surface events: n⁺ surface pulses (NSP) and p⁺ surface pulses (PSP)

[4] Modeling the likelihood of the data under the peak and the side-band hypotheses

- The data distribution at the peak energy consists of a superposition between the true events from the peak and a background component.
- The data distribution from the background at the peak energy resembles that from the side-bands.
- Provide a guess $p(z \mid H_2)$ with a known functional form.

Formally:

 $- p(z \mid \tilde{H}_0) = p(z \mid H_0) \cdot p(H_0 \mid \tilde{H}_0) + p(z \mid H_1) \cdot p(H_1 \mid \tilde{H}_0)$ $- p(z \mid H_1) = p(z \mid H_1)$

²²⁸Th calibration data ²⁰⁸TI Double-Escape Peak Side bands O 300 200 - **[][_\\^**_]_Z**_**]_Z**_** 100 1570 1580 1590 1600 1610 Energy (keV Available SSE and MSE samples are a **mixture** between Compton continuum events and the true

events in the peaks

Data from the ²⁰⁸TI DEP and its side-bands from ²²⁸Th calibration data are used to tag signal-like events and suppress backgrounds using the estimated likelihoods.

Energy spectra before and after the spiking of ⁴²Ar, before and after signal vs. background classification

Gamma lines survival fraction after setting a 90% threshold on the log-likelihood and a 95% threshold on the log-likelihood-ratio

Peak	Energy (keV)	Survival Fraction (%)
²⁰⁸ TI DEP	1592.5	87.8 ± 1.7 🕇
²¹² Bi FEP	1620.7	11.06 ± 0.91
²⁰⁸ TI SEP	2103.5	6.87 ± 0.33
²⁰⁸ TI FEP	2614.5	9.353 ± 0.051

The distribution of the DEP log-likelihood and the peak to side-

The suppression of ⁴²K n⁺ surface backgrounds is calculated from the change in signal-like counts before and after ⁴²Ar spiking. Obtained ⁴²K survival fraction:

 $SF_{42_{K}} < 0.3 \%$ at 90% CL

[8] Bulk- vs. surface-like identification (preliminary)

Data from the ²⁰⁸TI 2.6 MeV FEP and its side-bands from ²²⁸Th calibration data allows us to distinguish events

• H_0 : true events from the peak

Notation:

• H_1 : true events from the side-band

$$p(H_i \mid \tilde{H}_j) = \begin{bmatrix} \frac{N_{\text{peak}} + N_{\text{SB}}}{N_{\text{peak}}} & 0 & 0\\ \frac{N_{\text{SB}}}{N_{\text{peak}}} & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$$

• H_2 : events randomly sampled from a guess distribution • \widetilde{H}_i : mixture of events that correspond to the transition probabilities $p(H_i | \tilde{H}_i)$.

Obtain an initial guess by training a denoising Variational AutoEncoder (VAE), trained using the InfoVAE loss with $\alpha = 1$.

 $L = \mathbb{E}_{p(x)} \mathbb{E}_{q_{\varphi}(z \mid x)} [\log p_{\theta}(x \mid z)] - (1 - \alpha) \mathbb{E}_{p(x)} D_{\mathrm{KL}} (q_{\varphi}(z \mid x) \mid \mid p(z)) - (\alpha + \lambda - 1) D_{\mathrm{KL}} (q_{\varphi}(z) \mid \mid p(z))$

depositing energy near the n⁺ surface (surface-like) vs. events with energy depositions in the detector bulk only (bulk-like). This is due to the energy loss near the n⁺ surface, resulting in a partial charge collection. Thus, events with n⁺ surface energy depositions would be shifted towards lower energy values with respect to the peak energy. Gamma lines survival fraction after setting a 95% threshold on

Energy spectrum after the spiking of ⁴²Ar of events with light in the LAr

[9] Conclusions

- We have demonstrated the feasibility of suppressing and tagging n⁺ surface events without using labeled NSP.
- Flexibility: Once pulse-shape simulations of double-beta events are available, we can directly estimate the likelihood of data under a double-beta-like hypothesis using the method developed for all LEGEND detectors.
- Current ⁴²Ar SCARF measurements are not sufficiently sensitive to probe the target ⁴²K suppression of SF < 10⁻⁵ or similar for LEGEND-1000.

Future 42 Ar/ 42 K mitigation campaign with 100 times 42 Ar activity allows to probe SF down to 10^{-5} .