

Enhancing Pulse Shape Discrimination with Gradient Boosted Decision Trees and Twin Neural Networks

Alain Fauquex^{1,2}, <u>Marta Babicz²</u>, Laura Baudis² ¹Department of Physics, ETH Zürich; ²Physics-Institute, University of Zurich

Motivation

- High-purity germanium (HPGe) detectors play critical role in nuclear physics experiments
 - Neutrinoless double beta decay (LEGEND, Majorana Demonstrator, GERDA)
- Higher-than-expected background acceptance rates in LEGEND-200 [1]
 - Mitigation: Low-background materials + enhanced pulse shape discrimination (PSD)
- Traditional PSD relies on threshholded scalar shape parameters of the signal pulses

Results

ETH zürich

-
-

Universität

Zürich

Cut Type	Survival Fraction DEP	Survival Fraction SEP/FEP	loU
TWINNN+GBDT	80.9±0.4%	10.5%±0.4%	89.2%
GBDT	75.2±0.5%	11.2%±0.4%	87.7%
Traditional PSD	84.9±0.3%	11.8%±0.5%	100%