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Overview

We present the optimization of the injection of muons into the muon EDM
experiment at PS| — a precision particle physics experiment with the aim to
measure the muon electric dipole moment to unprecedented precision [1].
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The experiment can be simulated with expensive Monte-Carlo simulations using
G4Beamline [2], but optimizing by sampling the entire configuration space of
possible experimental configurations quickly becomes infeasible.
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We apply the Thompson Sampling (TS) procedure following [3], allowing for a
batched implementation. This involves sampling individual realizations of the GP
and choosing the maximizer. We optimize the kernel hyperparameters via
marginal likelihood.

Parallel processing implementation

Algorithm Iteration
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Our algorithm supports execution across T 1
hundreds to thousands of cores in parallel.

Instead of waiting for batch completions, T )
we run N concurrent optimization steps. E

Each step is an independent process that [ T N

reads and writes results to disk.
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A local approximation

Sampling realizations of a GP scales poorly with the number of points, as the
whole covariance matrix must be stored in memory. We therefore apply a local
approximation and sample the GP sequentially in batches.

For each new batch of inference points, we consider only the inference points in
a local neighborhood. This reduces the memory size significantly. This is
equivalent to truncating entries with a covariance less than a threshold €.
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Covariance Threshold Local Approximation

One can show that the approximation error due to this is O(M&‘) , where M is
the number of batches of inference points.
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Optimization results

We present both the raw data, and the Gaussian Process prediction in the figure
below, presented as pairwise plots of two parameters at a time.
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Estimating tolerances for parameters
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We compare our algorithm against a quasi-random search. We find significant

performance benefits with the same number of simulations.
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We use the Gaussian process fit to determine the tolerance of our experimental
parameters. We apply a quadratic approximation and can derive the parameter
tolerance analytically.
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